|👉 How to find the coefficients ai?
(1) Use Chapman-Enskog expansion, Taylor expansion, or Grad’s method to find the coefficients.
(2) BFL: a mesoscopic, geometrical approach proposed by Bouzidi et al.
BFL scheme
It determinates the boundary scheme based on the value of q. The length of the orange line is 1.
[NOTE]
(1) This scheme doesn’t rely on the collision model.
(2) If xFF is always available, we can remove the first-order time approximation, and convert the scheme into a two-node scheme.
(3) When l=q, the scheme is equivalent to that purposed by Geier et al. (Comput. Math. Appl., 70 (2015), pp. 507–547)
If we still use fiˉ∗(xFF,t) rather than replacing it with fiˉ(xF,t), the scheme is equivalent to that purposed by Yu et al. (AIAA Paper, 2003-0953, 2003.).
Non-equilibrium state reconstruction
Tao et al.[4] have proposed a scheme to reconstruct the equilibrium and non-equilibrium state of the fluid node near the wall.
For the boundary node xF, its unknown distribution function can be calculated by the following interpolation:
Here we cite the original sentences from the paper [4]:
It has been demonstrated that for low speed flow, using ρA(t) and ρA(t+δt) to approximate ρA(t+δt) and ρW(t+δt) have second- and third-order accuracies, respectively [23,39].
== Reference ==
[23] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids 14 (6) (2002) 2007–2010.
[39] Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, 2013.
So the boundary scheme purposed by Tao et al. [4] is:
[NOTE]
This scheme sounds easy and familar, right? Let’s make a summary.
(1) It comes from the interpolation scheme.
(2) Employ streaming step to eliminate the unknown fi(xFF,t+δt).
(3) The distribution function at the wall node xw is divieded into two parts: fi(eq) and fi(neq).
(4) fi(eq) is approximated by known macroscopic variables.
(5) fi(neq) is approximated by the non-equilibrium bounce-back.
Enhanced single-node boundary condition
Here, we introduce the enhanced single-node boundary condition purposed by Marson et al.[1].
Term ①: The haly-way bounce-back from Ladd (J. Fluid Mech., 271 (1994), pp. 285–309).
Note that: f(eq)−(xw)=wiρci⋅uw/cs2. Term ②: The term from [4]. Term ③: The new term designed by Marson et al.[1]. Term ④: The new (optional) term mentioned in the Sec. ⅣB of Marson et al.[1].
Marson et al.[1] use TRT collision model. So here we briefly introduce the two-relaxation-time (TRT) collision model.
Here, x{w,F} means use xw or xF as the position.
The non-equilibrium part is approximated by an nonequilibrium bounce-back. This is a first-order approximation of the nonequilibrium bounce-back method of Zou and He, and it leads to the following second-order accurate approximation:
The non-equilibrium term is also split into symmetric and anti-symmetric parts: f~i(neq)(xw,t)=fi(neq)+(xw,t)+fi(neq)−(xw,t). Marson et al.[1] gives three ways to approximate the non-equilibrium term.
(1) Non-symmetric enhanced local interpolation (Denoted as N):
The following table shows the interpolation coefficients provided by Marson et al. [1]. It should be noted that K− is the term used to eliminate viscosity errors in steady-state conditions. In practice, τ+→21 at high Reynolds numbers, making the contribution of K−τ−fi(neq)−(xF) less significant.
[NOTE]: The calculation of K− could be found in Marson et al. [1].
References
[1] Marson, F., Thorimbert, Y., Chopard, B., Ginzburg, I. & Latt, J. Enhanced single-node lattice Boltzmann boundary condition for fluid flows. Phys. Rev. E 103, 053308 (2021).
[2] 郭照立 & 郑楚光. 格子Boltzmann方法的原理及应用. (科学出版社, 2009).
[3] Zhao, W., Huang, J. & Yong, W.-A. Boundary conditions for kinetic theory based models I: Lattice boltzmann models. Multiscale Modeling & Simulation 17, 854–872 (2019).
[4] Tao, S., He, Q., Chen, B., Yang, X. & Huang, S. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles. Computers & Mathematics with Applications 76, 1593–1607 (2018).
He, X., & Luo, L.-S. (1997). Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E, 56(6), 6811–6817. DOI:10.1103/PhysRevE.56.6811↩︎↩︎↩︎
Qian, Y. H., D’Humières, D., & Lallemand, P. (1992). Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters, 17(6), 479–484. DOI:10.1209/0295-5075/17/6/001↩︎
Koelman, J. M. V. A. (1991). A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow. Europhysics Letters, 15(6), 603–607. DOI:10.1209/0295-5075/15/6/007↩︎
He, X., & Luo, L.-S. (1997). Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation. Journal of Statistical Physics, 88(3/4), 927–944. DOI:10.1023/B:JOSS.0000015179.12689.e4↩︎
Zaki Abiza, Miguel Chavez, David M. Holman, & Ruddy Brionnaud. Prediction of Finned Projectile Aerodynamics using a Lattice-Boltzmann Method CFD Solution (Vol:10, No:05, 2016). World Academy of Science, Engineering and Technology. ↩︎
Chen, Y., Ohashi, H., & Akiyama, M. (1994). Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E, 50, 2776–2783. DOI: 10.1103/PhysRevE.50.2776↩︎↩︎↩︎↩︎
Chen, Y., Ohashi, H., & Akiyama, M. (1997). Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number. Journal of Scientific Computing, 12(2), 169–185. DOI:10.1023/A:1025621832215↩︎↩︎↩︎↩︎
Nikolaos I. Prasianakis, & Konstantinos Boulouchos (2007). Lattice Boltzmann Method For Simulation Of Weakly Compressible Flows At Arbitrary Prandtl Number. International Journal of Modern Physics C, 18, 602-609. DOI:10.1142/S012918310701084X↩︎↩︎↩︎↩︎↩︎
Qian, Y.H (1993). Simulating thermohydrodynamics with lattice BGK models. Journal of Scientific Computing, 8, 231–242. DOI:10.1007/BF01060932↩︎↩︎
Alexander, F., Chen, S., & Sterling, J. (1993). Lattice Boltzmann thermohydrodynamics. Physical Review E, 47, R2249–R2252. DOI:10.1103/PhysRevE.47.R2249↩︎↩︎
Frapolli, N., Chikatamarla, S., & Karlin, I. (2014). Multispeed entropic lattice Boltzmann model for thermal flows. Physical Review E, 90, 043306. DOI:10.1103/PhysRevE.90.043306↩︎↩︎↩︎↩︎
N.I. Prasianakis, S.S. Chikatamarla, I.V. Karlin, S. Ansumali, & K. Boulouchos (2006). Entropic lattice Boltzmann method for simulation of thermal flows. Mathematics and Computers in Simulation, 72(2), 179-183. DOI:10.1016/j.matcom.2006.05.012↩︎↩︎↩︎
A. Bartoloni, Claudia Battista, Simone Cabasino, P. S. Paolucci, J. Pech, Renata Sarno, Gian Marco Todesco, Mario Torelli, Walter Tross, Piero Vicini, Roberto Benzi, Nicola Cabibbo, Federico Massaioli, & Raffaele Tripiccione (1993). LBE simulations of Rayleigh-Bénard convection on the APE100 parallel processor. International Journal of Modern Physics C, 04, 993-1006. DOI:10.1142/S012918319300077X↩︎↩︎
Xiaoyi He, Shiyi Chen, & Gary D. Doolen (1998). A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. Journal of Computational Physics, 146(1), 282-300. DOI:10.1006/jcph.1998.6057↩︎↩︎
Guo, Z., Zheng, C., Shi, B., & Zhao, T. (2007). Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model. Physical Review E, 75, 036704. DOI:10.1103/PhysRevE.75.036704↩︎↩︎↩︎↩︎↩︎
Dipankar Chatterjee (2009). An enthalpy-based thermal lattice Boltzmann model for non-isothermal systems. Europhysics Letters, 86(1), 14004. DOI:10.1209/0295-5075/86/14004↩︎↩︎
Chen, Z., Shu, C., & Tan, D. (2017). Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids, 29(5), 053601. DOI:10.1063/1.4983339↩︎
Y. Wang, C. Shu, & C.J. Teo (2014). Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows. Computers & Fluids, 94, 98-111. DOI: 10.1016/j.compfluid.2014.02.006↩︎
Zheng, L., Shi, B., & Guo, Z. (2008). Multiple-relaxation-time model for the correct thermohydrodynamic equations. Physical Review E, 78, 026705. DOI:10.1103/PhysRevE.78.026705↩︎
Ai-Guo Xu, Guang-Cai Zhang, Yan-Biao Gan, Feng Chen & Xi-Jun Yu (2012). Lattice Boltzmann modeling and simulation of compressible flows. Frontiers of Physics. 7, 582–600. DOI:10.1007/s11467-012-0269-5↩︎
Feng Chen, Aiguo Xu, Guangcai Zhang, Yingjun Li, & Sauro Succi (2010). Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. Europhysics Letters, 90(5), 54003. DOI:10.1209/0295-5075/90/54003↩︎
Sharma, K. V., Straka, R., & Tavares, F. W. (2020). Current status of Lattice Boltzmann Methods applied to aerodynamic, aeroacoustic, and thermal flows. Progress in Aerospace Sciences, 115, 100616. DOI:10.1016/j.paerosci.2020.100616↩︎
Kataoka, T., & Tsutahara, M. (2004). Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio. Physical Review E, 69, 035701. DOI:10.1103/PhysRevE.69.035701↩︎
Gan, Y.-B., Xu, A.-G., Zhang, G.-C., & Li, Y.-J. (2011). Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number. Communications in Theoretical Physics, 56(3), 490–498. DOI:10.1088/0253-6102/56/3/18↩︎
Hosseini, S. A., Atif, M., Ansumali, S., & Karlin, I. V. (2023). Entropic lattice Boltzmann methods: A review. Computers & Fluids, 259, 105884. DOI:10.1016/j.compfluid.2023.105884↩︎
Anirudh Jonnalagadda; Atul Sharma; Amit Agrawal (2021). Single relaxation time entropic lattice Boltzmann methods: A developer’s perspective for stable and accurate simulations. Computers & Fluids, 215, 104792. DOI:10.1016/j.compfluid.2020.104792↩︎
Yong, Wen-an., Luo, Li-Shi (2005). Nonexistence of H Theorem for Some Lattice Boltzmann Models. Journal of Statistical Physics, 121, 91–103. DOI:10.1007/s10955-005-5958-9↩︎
Li, Q., He, Y. L., Wang, Y., & Tao, W. Q. (2007). Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations. Physical Review E, 76(5), 056705. DOI:10.1103/PhysRevE.76.056705↩︎↩︎↩︎
Qu, K., Shu, C., & Chew, Y. (2007). Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Physical Review E, 75, 036706. ↩︎
Q. Li, Y.L. He, Y. Wang, & G.H. Tang (2009). Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows.Physics Letters A, 373(25), 2101-2108. DOI:10.1016/j.physleta.2009.04.036↩︎↩︎
A.L. Kupershtokh, D.A. Medvedev, & D.I. Karpov (2009). On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 58(5), 965-974. DOI:10.1016/j.camwa.2009.02.024. ↩︎↩︎↩︎
Q. Li, K.H. Luo, Q.J. Kang, Y.L. He, Q. Chen, & Q. Liu (2016). Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105. DOI:10.1016/j.pecs.2015.10.001. ↩︎
Li, Q., Zhou, P., & Yan, H. (2016). Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Physical Review E, 94, 043313. DOI:10.1103/PhysRevE.94.043313. ↩︎↩︎↩︎↩︎
Wagner, A. (2006). Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Physical Review E, 74, 056703. DOI: 10.1103/PhysRevE.74.056703. ↩︎
离散单元法(Discrete Element Method,简称DEM)是颗粒流数值模拟的重要数值方法,被用于各种各样的颗粒流定量研究中。颗粒流的粗粒化(Coarse Graining),便是将颗粒流流场的大量数据转化为连续场数据的数值方法。
在开始介绍之前,先简要列出主要的参考资料:
Breard, E. C. P., Dufek, J., Fullard, L., & Carrara, A. (2020). The Basal Friction Coefficient of Granular Flows With and Without Excess Pore Pressure: Implications for Pyroclastic Density Currents, Water‐Rich Debris Flows, and Rock and Submarine Avalanches. Journal of Geophysical Research: Solid Earth, 125(12), e2020JB020203. DOI:10.1029/2020JB020203.
Lacaze, L., & Kerswell, R. R. (2009). Axisymmetric Granular Collapse: A Transient 3D Flow Test of Viscoplasticity. Physical Review Letters, 102(10), 108305. DOI:10.1103/PhysRevLett.102.108305.
Weinhart, T., Labra, C., Luding, S., & Ooi, J. Y. (2016). Influence of coarse‐graining parameters on the analysis of DEM simulations of silo flow. Powder Technology, 293, 138–148. DOI:10.1016/j.powtec.2015.11.052
单种颗粒的粗粒化
为简单起见,先从仅存在单种球形颗粒的颗粒流开始说起,并且只考虑获取空间内一点 r 在 t 时刻的粗粒化数据。
粗粒化函数
在这里,引入高斯函数
W(r)={Vw1exp(−2w∣r∣2),0,∣r∣<cotherwise
其中: w 为粗粒化宽度; c=3w 为粗粒化截断长度; Vw 是确保其密度积分等于总质量的系数
Vw=22⋅w3π23erf(2wc2)−4cw2πexp(2w2−c2)
Weinhart 等建议 w 的取值范围应在 [0.75dmean,1.25dmean] 之间,其中 dmean 为平均颗粒直径。
密度和动量的计算
在 t 时刻,单种颗粒的集合为 q 。对于其中的第 i 个球,其位置矢量为 ri ,质量为 mi ,速度为 ui。
Chen, Z., Shu, C., Wang, Y., Yang, L. M., & Tan, D. (2017). A Simplified Lattice Boltzmann Method without Evolution of Distribution Function. Advances in Applied Mathematics and Mechanics, 9(1), 1–22. DOI:10.4208/aamm.OA-2016-0029 ↩︎
Z. Chen, C. Shu, D. Tan; Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids. 1 May 2017; 29 (5): 053601. DOI:10.1063/1.4983339 ↩︎↩︎↩︎
Chen Z, Shu C, Tan D, Wu C. On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis. Int J Numer Meth Fluids. 2018; 87: 161–179. DOI:10.1002/fld.4485 ↩︎
Chen, Z., & Shu, C. (2020). Simplified and Highly Stable Lattice Boltzmann Method. WORLD SCIENTIFIC. DOI:10.1142/12047 ↩︎
C. Shu, Y. Wang, C. Teo, and J. Wu. Development of lattice Boltzmann flux solver for simulation of incompressible flows. Advances In Applied Mathematics And Mechanics. 6, 436 (2014). ↩︎