工位上换了新电脑,于是需要重新安装 RDPWrap 让机子上的 Windows 11 家庭版能够打开 RDP 远程连接。

  1. 安装 RDPWrap

RDPWrap 的 Github 网址上下载它的最新 Release 【其实已经很久没更新了】。 解压后运行 install.bat 进行安装。

  1. 出现 Listener state: Not-listening 的解决方案。

1)首先在 sebaxakerhtc/rdpwrap.ini 这个仓库里下一份最新的 rdpwrap.ini,一般来说大多数Windows OS 版本号它都有配置。
2)然后将自行下载的 rdpwrap.ini 替换掉原始文件[1],原始文件位于 C:\Program Files\RDP Wrapper 文件夹。
3)替换完成后,回到解压 RDPWrap 的文件夹并在此处打开终端,运行 .\RDPWInst.exe -r [2]。这之后我的电脑就设置完成了。


  1. 执行此操作前先在具有管理员权限的终端里把对应远程服务关了:net stop TermService↩︎

  2. 这里参考了 Github 上的 issue 999↩︎

工位上换了新电脑,于是需要给新电脑安装 Linux 子系统(WSL 2)用来跑代码。
这里简单记录一下我的安装过程。

  1. 安装 WSL 2

这里主要是按照微软官方的教程[1][2]来做。

先在 powershell 里启用 WSL 和虚拟机功能

1
2
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart  
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

然后安装适用于 x64 计算机的 WSL2 Linux 内核更新包,并在 powershell 里将 WSL 2 设置为默认。

1
wsl --set-default-version 2

WSL 2 的自定义安装位置参考的是CSDN上给的做法:我下载了Ubuntu 24.04 的 AppxBundle,从包里提取 Ubuntu_2404.0.5.0_x64.Appx ,然后在我想要的位置将它当成 zip 解压。最后运行一下 ubuntu2404.exe 即可。

  1. 导入Windows系统的字体

这里主要参照知乎上给的方法[3],做了个软链接。

1
2
3
sudo mkdir /usr/share/fonts/win11 
sudo ln -s /mnt/c/Windows/Fonts/* /usr/share/fonts/win11
fc-cache -fv
  1. 安装CUDA

Nvidia 的安装教程 和它给的下载链接主要是针对 WSL-Ubuntu 的。

我用的网络下载,在shell里就应该是:

1
2
3
4
5
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-6
sudo apt-get -y install cuda

即使是这么安装完,还是会有非常幽默的 nvcc 找不到、 libcuda.so 找不到等问题。我就参照网上的做法[4][5]~/.bashrc 里补充了这么一段:

1
2
3
4
5
6
# >>> Nvidia CUDA initialize >>>
export CUDA_HOME=/usr/local/cuda
export PATH=${CUDA_HOME}/bin:${PATH}
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export LD_LIBRARY_PATH=/usr/lib/wsl/lib/:${LD_LIBRARY_PATH}
# <<< Nvidia CUDA initialize <<<

搞定。


  1. https://learn.microsoft.com/zh-cn/windows/wsl/install ↩︎

  2. https://learn.microsoft.com/zh-cn/windows/wsl/install-manual ↩︎

  3. https://zhuanlan.zhihu.com/p/683470601 ↩︎

  4. https://stackoverflow.com/questions/68221962/nvcc-not-found-but-cuda-runs-fine ↩︎

  5. https://github.com/microsoft/WSL/issues/8587 ↩︎

题 1

一无限流体被单位质量力 μr3/2\mu r^{-3/2} 的力作用,方向指向原点。若开始时流体静止且其中有一个空腔 r=cr=c,证明:在过 (25μ)1/2c5/4(\frac{2}{5 \mu})^{1/2} c^{5/4} 时间之后,空腔被流体填满。

这里假设流体不可压缩。取球坐标系 (r,θ,ϕ)(r, \theta, \phi) 进行计算,并以空腔中心为原点。

思路1:功能关系

假设当 t=t0t=t_0 时,空腔边界的球壳形薄液面位于 r=r0r=r_0 处。该薄液面厚度为 dr0\mathrm{d}r_0, 液面速度 vr(r0,t0)=0v_r (r_0, t_0) = 0

t0t_0 时刻,位于 r=r0r=r_0 处且厚度为 dr0\mathrm{d}r_0 的液面向内推动了 dr\mathrm{d} r, 由于该液面的质量积为 dm=ρ(4πr02)dr0\mathrm{d}m = \rho (4 \pi r_0^2) \mathrm{d}r_0,则这一过程中体积力(Fbr=μr3/2F_{br} = -\mu r^{-3/2})所作的功为

dW=dmr0+Fbrdr=dm(2μr01/2)=8μρπr03/2dr0.\mathrm{d} W = \mathrm{d}m \cdot \int_{r_0}^{+\infty} F_{br} \mathrm{d}r = \mathrm{d}m \cdot (-2 \mu r_0^{-1/2}) = -8 \mu \rho \pi r_0^{3/2} \mathrm{d}r_0 .

t1=t0+δtt_1 = t_0 + \delta_t 时,该液面前进到 r=r1r=r_1 位置(r1r0r_1 \le r_0),此时液面速度为 vr(r1,t1)=dr1dtv_r(r_1, t_1) = \dfrac{\mathrm{d} r_1}{\mathrm{d} t}

所以薄液面从 r0r_0 运动到 r1r_1 过程中, FbrF_{br} 做的总功为:

W=r0r1dW=165μρπ(r05/2r15/2)W = \int_{r_0}^{r_1} \mathrm{d} W = \frac{16}{5} \mu \rho \pi (r_0^{5/2} - r_1^{5/2})

记速度 v=[vr,0,0]T\bold{v} = [v_r, 0, 0]^T。代入球坐标系下的连续性方程,化简得:

(r2vr)r=0\frac{\partial (r^2 v_r)}{\partial r} = 0

rr 积分,可得 r2vr=f(t)r^2 v_r = f(t) ,其中 f(t)f(t) 为待定函数。根据这一方程,可得在 t1t_1 时刻满足 r02vr(r0,t1)=r12vr(r1,t1)r_0^2 v_r(r_0, t_1) = r_1^2 v_r(r_1, t_1)

t1t_1 时刻, r=r0r=r_0 层液体的动能表示为

dE=12dmvr2(r0,t1)=2ρπr14r02vr2(r1,t1)dr0\mathrm{d} E = \frac{1}{2} \cdot \mathrm{d}m \cdot v_r^2(r_0, t_1) = 2 \rho \pi \cdot \frac{r_1^4}{r_0^2} \cdot v_r^2(r_1, t_1) \mathrm{d}r_0

这一时刻下整个系统的动能为:

E=r1+dE=2ρπr13vr2(r1,t1)E = \int_{r_1}^{+\infty} \mathrm{d} E = 2 \rho \pi r_1^3 \cdot v_r^2(r_1, t_1)

据此,我们令 t0t_0 时刻即为初始时刻(t0=0t_0=0),满足 r0=cr_0 = cvr(t=0)=0v_r(t=0)=0。所以 t0t_0 时刻的动能为 0。对 t0t_0t1t_1 时刻的过程, FbrF_{br} 所做的功 WW 全部转化为流场动能 EE,即:W=EW=E

165μρπ(c5/2r15/2)=2ρπr13vr2(r1,t1)0\frac{16}{5} \mu \rho \pi (c^{5/2} - r_1^{5/2}) = 2 \rho \pi r_1^3 \cdot v_r^2(r_1, t_1) - 0

也就有:

vr(r1,t1)=dr1dt=8μ5r13/2(c5/2r15/2)v_r(r_1, t_1) = \frac{\mathrm{d} r_1}{\mathrm{d} t} = \sqrt{\frac{8 \mu}{5}} \cdot \sqrt{r_1^{-3/2} (c^{5/2} - r_1^{5/2})}

分离变量后解得:

1625(c5/2r15/2)=(8μ5t+c1)2\frac{16}{25} (c^{5/2} - r_1^{5/2}) = \left( \sqrt{\frac{8 \mu}{5}} t + c_1 \right)^2

其中 c1c_1 为待定常数。当 t=0t=0 时, r1=cr_1 = c,所以 c1=0c_1 = 0

假设当 t=Tmt=T_{m}r1=0r_1=0, 则可解得: Tm=(25μ)1/2c5/4T_m = (\frac{2}{5 \mu})^{1/2} c^{5/4}

思路2:联立动量方程和连续性方程

记速度 v=[vr,0,0]T\bold{v} = [v_r, 0, 0]^T。代入连续性方程,化简得:

(r2vr)r=0\frac{\partial (r^2 v_r)}{\partial r} = 0

rr 积分,可得 r2vr=f(t)r^2 v_r = f(t) ,其中 f(t)f(t) 为待定函数。

该场景下的运动方程为

ρDvDt=ρFb\rho \frac{\mathrm{D} \bold{v}}{\mathrm{D} t} = \rho \bold{F}_b

所以,动量方程写作:

vrt+vrvrr=Fbr\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} = F_{br}

由题目可知 Fbr=μr3/2F_{br} = - \mu r^{-3/2}。将 r2vr=f(t)r^2 v_r = f(t) 代入到运动方程中,得:

f(t)r2+vrvrr=μr3/2\frac{f'(t)}{r^2} + v_r \frac{\partial v_r}{\partial r} = -\mu r^{-3/2}

R(t)R(t) 为真空球面的半径变化,则 vr(r=R(t))=R(t)v_r (r=R(t)) = R'(t)。对 rr 积分,得到:

R(t)f(t)r2+vrvrrdr=μR(t)r3/2dr[f(t)r+(vr)22]R(t)=2μrR(t)\begin{aligned} \int_{\infty}^{R(t)} \frac{f'(t)}{r^2} + v_r \frac{\partial v_r}{\partial r} \mathrm{d}r &= -\mu \int_{\infty}^{R(t)} r^{-3/2} \mathrm{d}r \\ \left.\left[ -\frac{f'(t)}{r} + \frac{(v_r)^2}{2} \right]\right|_{\infty}^{R(t)} &= \left. \frac{2 \mu}{\sqrt{r}} \right|_{\infty}^{R(t)} \end{aligned}

代入 vr(r=)=0v_r (r=\infty)=0,整理得到:

f(t)R(t)+(R(t))22=2μR(t)-\frac{f'(t)}{R(t)} + \frac{(R'(t))^2}{2} = \frac{2 \mu}{\sqrt{R(t)}}

在边界上有 f(t)=R2(t)vr(r=R(t))=R2Rf(t) = R^2(t) \cdot v_r (r=R(t)) = R^2 \cdot R' , 所以 f(t)=2RR2+R2Rf'(t) = 2 R R'^{2} + R^2 \cdot R{''} 。上式化简为:

32R2RR=2μR-\frac{3}{2} R'^{2} -R \cdot R{''} = \frac{2 \mu}{\sqrt{R}}

由于 d(R1/2(R)2)dR=R1/22(R)2+2R1/2R\frac{\mathrm{d} (R^{1/2} (R')^{2})}{\mathrm{d} R} =\frac{R^{-1/2}}{2} (R')^{2} + 2 R^{1/2} R{''},上式整理得:

d(R1/2(R)2)8μ+5(R1/2(R)2)=dR2R-\frac{\mathrm{d}(R^{1/2} (R')^{2})}{8\mu + 5 (R^{1/2} (R')^{2})} = \frac{\mathrm{d}R}{2R}

分离变量后并整理出 RR' ,可表示为:

R=R1/25(c1R5/28μ)R' = \sqrt{\frac{R^{-1/2}}{5} (c_1 R^{-5/2} - 8 \mu) }

R(t=0)=cR(t=0)=cR(t=0)=0R'(t=0) = 0 代入,解得: c1=8μc5/2c_1 = 8 \mu c^{5/2} 。即:

R=R1/258μ(c5/2R5/21)=8μ5R1/2(c5/2R5/21)R' = \sqrt{\frac{R^{-1/2}}{5} 8 \mu (c^{5/2} R^{-5/2} - 1)} \\= \sqrt{\frac{8 \mu}{5}} \cdot \sqrt{R^{-1/2} (c^{5/2} R^{-5/2} - 1)}

综上,真空球面的总运动时长表示为:

T=0c1RdR=58μ0c[R1/2((cR)5/21)]1/2dRT = \int_{0}^{c} \frac{1}{R'} \mathrm{d}R = \sqrt{\frac{5}{8 \mu}} \int_{0}^{c} \left[ R^{-1/2} \left( \left(\frac{c}{R}\right)^{5/2} - 1 \right) \right]^{-1/2} \mathrm{d}R

因为:

0c[R1/2((cR)5/21)]1/2dR=0cR1/4[((cR)5/21)]1/2dR=450c[((cR)5/21)]1/2d(R5/4)=t=R5/4450c5/4[(c5/2t21)]1/2dt=450c5/4t[(c5/2t2)]1/2dt=45(12)0c5/4[(c5/2t2)]1/2d(c5/2t2)=45(12)2(c5/2t2)1/20c5/4=45c5/4\begin{aligned} & \int_{0}^{c} \left[ R^{-1/2} \left( \left(\frac{c}{R}\right)^{5/2} - 1 \right) \right]^{-1/2} \mathrm{d}R \\ =& \int_{0}^{c} R^{1/4} \left[ \left( \left(\frac{c}{R}\right)^{5/2} - 1 \right) \right]^{-1/2} \mathrm{d}R \\ =& \frac{4}{5} \int_{0}^{c} \left[ \left( \left(\frac{c}{R}\right)^{5/2} - 1 \right) \right]^{-1/2} \mathrm{d}(R^{5/4}) \\ \xlongequal{t=R^{5/4}} & \frac{4}{5} \int_{0}^{c^{5/4}} \left[ \left( c^{5/2} t^{-2} - 1 \right) \right]^{-1/2} \mathrm{d}t \quad= \frac{4}{5} \int_{0}^{c^{5/4}} t \left[ \left( c^{5/2} - t^2 \right) \right]^{-1/2} \mathrm{d}t \\ =& \frac{4}{5} \cdot \left(-\frac{1}{2}\right) \int_{0}^{c^{5/4}} \left[ \left( c^{5/2} - t^2 \right) \right]^{-1/2} \mathrm{d}(c^{5/2} - t^2) \\ =& \frac{4}{5} \cdot \left(-\frac{1}{2}\right) \left.2 (c^{5/2} - t^2)^{1/2}\right|_{0}^{c^{5/4}} = \frac{4}{5} c^{5/4} \end{aligned}

所以 T=58μ45c5/4=25μc5/4T = \sqrt{\frac{5}{8 \mu}} \cdot \frac{4}{5} c^{5/4} = \sqrt{\frac{2}{5 \mu}} c^{5/4} .

证毕。

题 2

体积为 43πa3\frac{4}{3} \pi a^3 的液体充满于两个同心球面之间,外球面有压强 π\pi 作用,无质量力,内球面压强为 0 。开始时液体静止,内球面半径为 2a2a 。证明:当内球面半径变为 aa 时,其速度为 (14π3ρ21/321/31)12\displaystyle \left(\frac{14 \pi}{3 \rho} \frac{2^{1/3}}{2^{1/3} - 1}\right)^{\frac{1}{2}}

这里假设流体不可压缩。取球坐标系 (r,θ,ϕ)(r, \theta, \phi) 进行计算,并以空腔中心为原点。

记初始状态下(即 t=0t=0 时刻),内球面半径为 R0=2aR_0=2 a,外球面半径为 R1R_1;当内球面半径变为 aa 时(即 t1t_1 时刻),此时的内、外球面半径为分别为 R01=aR_{01} = aR11R_{11}。由于流体体积 V=43πa3V = \frac{4}{3} \pi a^3,可得:

V=43π(R13R03)=43π(R113R013)\begin{aligned} V &= \frac{4}{3} \pi (R_1^3 - R_0^3) \\ &= \frac{4}{3} \pi (R_{11}^3 - R_{01}^3) \end{aligned}

解得: R1=91/3aR_1 = 9^{1/3} aR11=21/3aR_{11} = 2^{1/3} a

记速度 u=[vr,0,0]T\bold{u} = [v_r, 0, 0]^T。代入连续性方程,化简得:

(r2vr)r=0\frac{\partial (r^2 v_r)}{\partial r} = 0

rr 积分,可得 r2vr=f(t)r^2 v_r = f(t) ,其中 f(t)f(t) 为待定函数。

t[0,t1]t \in [0,t_1] 时间段,外界压强在外表面做的功为:

W=R1R11(π)S(r)dr=283π2a3W = \int_{R_{1}}^{R_{11}} (-\pi) S(r) \mathrm{d} r = \frac{28}{3} \pi^2 a^3

其中 S(r)=4πr2S(r) = 4 \pi r^2 为球的表面积公式。

t1t_1 时刻, r2vr=f(t1)r^2 v_r = f(t_1) 为定值。若记此时刻的内球面速度为 u0=[v0,0,0]T\bold{u}_0 = [v_0, 0, 0]^Trr 处的流体速度为 ur=[vr,0,0]T\bold{u}_r = [v_r, 0, 0]^Tr[R01,R11]r \in [R_{01}, R_{11}]),则 R012v0=r2vrR_{01}^2 v_0 = r^2 v_r 。 所以 vr=(R01r)2v0v_r = \left( \frac{R_{01}}{r} \right)^2 v_0

t1t_1 时刻的流场总动能表示为:

Et1=R01R1112vr2(ρS(r)dr)=2πρv02a321/3121/3E_{t_1} = \int_{R_{01}}^{R_{11}} \frac{1}{2} v_r^2 \cdot (\rho S(r) \mathrm{d}r) = 2 \pi \rho v_0^2 a^3 \frac{2^{1/3} - 1}{2^{1/3}}

由于初始时刻的动能 E0=0E_0 = 0,根据功能关系可知:

W=Et1E0W = E_{t_1} - E_0

解得 t1t_1 时刻的内球面速度为: v0=(14π3ρ21/321/31)12\displaystyle v_0= - \left(\frac{14 \pi}{3 \rho} \frac{2^{1/3}}{2^{1/3} - 1}\right)^{\frac{1}{2}} ,方向指向原点。

本文同步发表于知乎CSDN

我在阅读其他文献时,看到有文献提到 Kupershtokh 的一篇关于 LBM 外力项的文章[1],他提出的格式在其他文章中又被称为 Exact difference method(EDM)

本想搜索这篇文章的PDF进行阅读,但最后只找到一个网站介绍了部分信息。这份粗略笔记的内容,都是基于其他文献[2][3][4]中对该方法的介绍而整理的。

介绍

Boltzmann-BGK方程的近似

密度分布函数 ff 的 Boltzmann-BGK方程写作:

ft+ξf+aξf=1τf[ff(eq)](1)\frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f + \boldsymbol{a} \cdot \nabla_{\bold{\xi}} f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] \tag{1}

其中:

f(eq)=ρ(2πRgT)D/2exp((ξu)22RgT)(2)f^{(eq)} = \frac{\rho}{(2 \pi R_g T)^{D/2}} \exp{\left(- \frac{(\bold{\xi} - \bold{u})^2}{2 R_g T}\right)} \tag{2}

符号含义分别为

  • ξ\bold{\xi} : 粒子速度;
  • ρ\rho : 流体密度;
  • u\bold{u} : 流场宏观速度;
  • RgR_g : 气体常数;
  • TT : 温度;
  • a=du/dt\boldsymbol{a}=\mathrm{d}\bold{u}/\mathrm{d}t : 流场加速度。

Knudsen数较小时,Boltzmann方程的体力项可以基于f(eq)f^{(eq)}进行近似,即

ξfξf(eq)\nabla_{\bold{\xi}} f \approx \nabla_{\bold{\xi}} f^{(eq)}

根据式(2), f(eq)f^{(eq)} 是分子随机速度 C=ξu\bold{C} = \bold{\xi} - \bold{u} 的指数函数,则:

f(eq)u=f(eq)ξ=ξf(eq)\frac{\partial f^{(eq)}}{\partial \bold{u}} = -\frac{\partial f^{(eq)}}{\partial \bold{\xi}} = -\nabla_{\bold{\xi}} f^{(eq)}

假设密度 ρ\rho 为常数,则 dρdt=0\frac{\mathrm{d} \rho}{\mathrm{d} t}=0,那么 f(eq)f^{(eq)} 的全导数为:

df(eq)dt=f(eq)ududt+f(eq)ρdρdtf(eq)ududt=aξf(eq)\begin{aligned} \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} &= \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} + \frac{\partial f^{(eq)}}{\partial \rho} \cdot \frac{\mathrm{d} \rho}{\mathrm{d} t} \\ &\approx \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} = -\boldsymbol{a} \cdot \nabla_{\bold{\xi}} f^{(eq)} \end{aligned}

也就是说,Kupershtokh 等[1:1][2:1]近似的 Boltzmann-BGK方程写作:

ft+ξf=1τf[ff(eq)]+df(eq)dt(3)\frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] + \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} \tag{3}

近似方程的离散化

将式(3)在[t,t+δt][t,t+\delta_t]内沿着eα\bold{e}_\alpha方向积分,可得

fα(x+eαδt,t+δt)fα(x,t)=1τ[fα(x,t)fα(eq)(ρ,u)]+[fα(eq)(u(t+δt))fα(eq)(u(t))](4)\begin{aligned} f_\alpha (\bold{x} + \bold{e}_\alpha \delta_t, t+\delta_t) - f_\alpha (\bold{x}, t) =& -\frac{1}{\tau} \left[ f_\alpha (\bold{x}, t) - f_\alpha^{(eq)} (\rho, \bold{u^*}) \right] \\ & + \left[ f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \right] \end{aligned} \tag{4}

其中:

  • δt\delta_t 为时间步长;
  • τ=τf/δt\tau = \tau_f / \delta_t 为无量纲松弛时间;
  • x\bold{x} 为网格点位置,ρ,u\rho, \bold{u^*} 分别为该点在 tt 时刻的密度和速度(与宏观速度 u\bold{u} 有区别);
  • fα,fα(eq)f_\alpha, f_\alpha^{(eq)} 分别为 eα\bold{e}_\alpha 方向的分布函数平衡态

fα(eq)=wαρ[1+eαucs2+(eαu)22cs4u22cs2]=wαρ[1+eαucs2+12cs4(uu):(eαeαcs2[I])](4-1)\begin{aligned} f_\alpha^{(eq)} &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{(\bold{e}_\alpha \cdot \bold{u})^2}{2 c_s^4} - \frac{|\bold{u}|^2}{2 c_s^2} \right] \\ &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\ \end{aligned} \tag{4-1}

这里 wαw_\alphaeα\bold{e}_\alpha 的权重系数, [I][\bold{I}] 为单位矩阵;
两个同样为m*n大小的矩阵 [A][\bold{A}][B][\bold{B}] ,则 [A]:[B]=i=1mj=1nAijBij\displaystyle [\bold{A}] : [\bold{B}] = \sum^{m}_{i=1}\sum^{n}_{j=1} A_{ij} B_{ij}

  • FαF_\alpha 为外力项,其表达式基于外力 F=ρdudt=ρa\bold{F} = \rho \dfrac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} = \rho \bold{a} 进行构建。

Fα=fα(eq)(u(t+δt))fα(eq)(u(t))F_\alpha = f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t))

并且

u(t)=(αfαeα)/(αfα)u(t+δt)=u(t)+tt+δtdudtdt=u(t)+tt+δtFρdtu(t)+Fρδt(5)\begin{aligned} \bold{u^*}(t) &= \left(\sum_{\alpha} f_\alpha \bold{e}_\alpha \right) / \left(\sum_{\alpha} f_\alpha \right) \\ \bold{u^*}(t+\delta_t) &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} \mathrm{d} t \\ &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\bold{F}}{\rho} \mathrm{d} t \approx \bold{u^*}(t) + \frac{\bold{F}}{\rho} \delta_t \end{aligned} \tag{5}

这意味着加速度 a=F/ρ\bold{a}=\bold{F}/\rho[t,t+δt][t,t+\delta_t] 时间段内被视为常数。

Kupershtokh等在这篇文章[2:2]说明,在使用该源项时,流体宏观量的计算应表示为:

ρ=αfα,ρu=ieαfα+δtF2(6)\rho = \sum_{\alpha} f_\alpha ,\quad \rho \bold{u} = \sum_{i} \bold{e}_\alpha f_\alpha + \frac{\delta_t \bold{F}}{2} \tag{6}

Li 等[4:1]通过 Chapman-Enskog 展开证明:该格式向宏观方程引入的误差项为:

ErrorEDM=δt2(FF4ρ)(7)\mathbf{Error}_{\mathrm{EDM}} = -\delta_t^2 \nabla\cdot\left( \frac{\bold{FF}}{4 \rho} \right) \tag{7}

EDM 源项的展开式

为便于分析,这里采用如下书写形式的平衡态:

fα(eq)=wαρ[1+eαucs2+12cs4(uu):(eαeαcs2[I])]f_\alpha^{(eq)} = w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right]

将其带入 EDM 源项,记 Δu=Fρδt\Delta\bold{u} = \frac{\bold{F}}{\rho} \delta_t,整理得:

Fα=fα(eq)(u(t+δt))fα(eq)(u(t))=ρwα{eαΔucs2+12cs4[(u+Δu)(u+Δu)uu]:(eαeαcs2[I])}\begin{aligned} F_{\alpha} &= f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \\&= \rho w_\alpha \left\{ \frac{\bold{e}_\alpha \cdot \Delta\bold{u}}{c_s^2} + \newline \frac{1}{2 c_s^4} \left[ (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) \right.\right. \\ &\quad \left. - \bold{u}^* \bold{u}^* \right] : \left.(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right\} \end{aligned}

这里涉及矩阵 (u+Δu)(u+Δu)(\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u})uu\bold{u}^* \bold{u}^* 的相减,由于:

(u+Δu)(u+Δu)=(ui+Δui)(uj+Δuj),uu=uiuj(\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) = (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j), \quad \bold{u}^* \bold{u}^* = u^*_{i} u^*_{j}

其中 uiu_i^*Δui=Fiδt/ρ\Delta u_i = F_i \delta_{t} / \rho 分别为 u\bold{u}^*Δu\Delta\bold{u} 在 i 轴上的分量,所以:

(u+Δu)(u+Δu)uu=(ui+Δui)(uj+Δuj)uiuj=δtρ(uiFj+ujFi)+δt2ρ2FiFj=δtρ(ui+Fiδt2ρ)Fj+δtρ(uj+Fjδt2ρ)Fi\begin{aligned} (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) - \bold{u}^* \bold{u}^{*} &= (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j) - u^*_{i} u^*_{j} \\ &= \frac{\delta_t}{\rho} (u_i^* F_j + u_j^* F_i) + \frac{\delta_t^2}{\rho^2} F_i F_j \\ &= \frac{\delta_t}{\rho} (u_i^* + \frac{F_i \delta_t}{2 \rho}) F_j + \frac{\delta_t}{\rho} (u_j^* + \frac{F_j \delta_t}{2 \rho}) F_i \end{aligned}

这里令 vEDM=u+F2ρδt\bold{v}_{\rm{EDM}} = \bold{u}^{*} + \frac{\bold{F}}{2 \rho} \delta_{t} ,则 EDM 源项的展开式化简为:

Fα=δtwα[eαFcs2+12cs4(vEDMF+FvEDM):(eαeαcs2[I])](8)F_\alpha = \delta_t w_\alpha \left[ \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} + \frac{1}{2 c_s^4} \left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \tag{8}

上式即为 EDM 源项的展开结果。

源项误差的 Chapman-Enskog 分析

这里的推导主要参考 Li 等[4:2]的文章,并补充了一些自己的笔记。

需要提醒的是,下文的速度记号和前文不同。

源项的各阶速度矩

根据 LBM 格子张量对称性,有前 5 阶表达式:

αwα=1,αwαeαi=0,αwαeαieαj=cs2δij,αwαeαieαjeαk=0αwαeαieαjeαkeαl=cs4(δijδkl+δikδjl+δilδkj)αwαeαieαjeαkeαleαm=0\sum_{\alpha} w_{\alpha} = 1 ,\quad \sum_{\alpha} w_{\alpha} e_{\alpha i} = 0 ,\\ \sum_{\alpha} w_{\alpha} e_{\alpha i} e_{\alpha j} = c_s^2 \delta_{ij} ,\quad \sum_{\alpha} w_{\alpha} e_{\alpha i} e_{\alpha j} e_{\alpha k} = 0 \\ \sum_{\alpha} w_{\alpha} e_{\alpha i} e_{\alpha j} e_{\alpha k} e_{\alpha l} = c_s^4 (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{kj}) \\ \sum_{\alpha} w_{\alpha} e_{\alpha i} e_{\alpha j} e_{\alpha k} e_{\alpha l} e_{\alpha m} = 0

其中 eαie_{\alpha i} 表示 D 维向量 eα\bold{e}_{\alpha} 的第 ii 个分量, wαw_\alphaeα\bold{e}_{\alpha} 的权重系数。 δij\delta_{ij} 为克罗内克符号。

所以,对于 EDM 格式的源项 Fα,EDMF_{\alpha,\mathrm{EDM}} ,其各阶速度矩为:

αFα,EDM=0,αeαFα,EDM=F,αeαeαFα,EDM=δt((uF+Fu)+δtFFρ)(9)\sum_{\alpha} F_{\alpha,\mathrm{EDM}} = 0 ,\quad \sum_{\alpha} \bold{e}_\alpha F_{\alpha,\mathrm{EDM}} = \bold{F} ,\quad\\ \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha,\mathrm{EDM}} = \delta_t \left( (\bold{u}^* \bold{F} + \bold{F}\bold{u}^*) + \delta_t \frac{\bold{FF}}{\rho} \right) \tag{9}

技术细节可见附录(A)。

LBM 的常规 Chapman-Enskog 展开

令展开参数 ϵ\epsilon 是与克努森数同阶的小量,则将分布函数展开为

fα=fα(0)+ϵfα(1)+ϵ2fα(2)+...,f_{\alpha} = f_{\alpha}^{(0)} + \epsilon f_{\alpha}^{(1)} + \epsilon^2 f_{\alpha}^{(2)} + ...,

源项展开为 Fα=ϵF1αF_{\alpha} = \epsilon F_{1 \alpha},时间和空间偏导展开为

t=ϵt1+ϵ2t2,x=ϵx1.\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} ,\quad \frac{\partial}{\partial \bold{x}} = \epsilon \frac{\partial}{\partial \bold{x}_1}.

将式(4)中的 fα(x+eαδt,t+δt)f_\alpha (\bold{x} + \bold{e}_\alpha \delta_t, t+\delta_t)fα(x,t)f_\alpha (\bold{x}, t) 处进行 Taylor 展开(至2阶项),并把上述展开式代入,可得 ϵ\epsilon 各阶项的方程为:

O(ϵ0):fα(0)=fα(eq),(101)O(ϵ1):D1αfα(0)=1τδtfα(1)+F1αδt,(102)O(ϵ2):fα(0)t2+D1αfα(1)+δt2D1α2fα(0)=1τδtfα(2).(103)\begin{aligned} O(\epsilon^0):\quad & f_{\alpha}^{(0)} = f_{\alpha}^{(eq)} , &(10-1)\\ O(\epsilon^1):\quad & \mathrm{D}_{1 \alpha} f_{\alpha}^{(0)} = -\frac{1}{\tau \delta_t} f_{\alpha}^{(1)} + \frac{F_{1 \alpha}}{\delta_t} , &(10-2)\\ O(\epsilon^2):\quad & \frac{\partial f_{\alpha}^{(0)}}{\partial t_2} + \mathrm{D}_{1 \alpha} f_{\alpha}^{(1)} + \frac{\delta_t}{2} \mathrm{D}_{1 \alpha}^2 f_{\alpha}^{(0)} = -\frac{1}{\tau \delta_t} f_{\alpha}^{(2)} . &(10-3)\\ \end{aligned}

其中 D1α=t1+eαx1\displaystyle \mathrm{D}_{1 \alpha} = \frac{\partial}{\partial t_1} + \bold{e}_{\alpha} \cdot \frac{\partial}{\partial \bold{x}_1}。将式(10-2)代入式(10-3)中,式(10-3)可被化简为式(10-4):

O(ϵ2):fα(0)t2+D1α(112τ)fα(1)+12D1αF1α=1τδtfα(2).(104)\begin{aligned} O(\epsilon^2):\quad & \frac{\partial f_{\alpha}^{(0)}}{\partial t_2} + \mathrm{D}_{1 \alpha} \left(1 - \frac{1}{2 \tau}\right) f_{\alpha}^{(1)} + \frac{1}{2} \mathrm{D}_{1 \alpha} F_{1 \alpha} = -\frac{1}{\tau \delta_t} f_{\alpha}^{(2)} . &(10-4) \end{aligned}

(1)考虑对式(10-3)和式(10-4)计算零阶矩,得:

ρt1+1(ρu)=0ρt2+121(δtF1)=0\frac{\partial \rho}{\partial t_1} + \nabla_1 \cdot (\rho \bold{u}^*) = 0 \\ \frac{\partial \rho}{\partial t_2} + \frac{1}{2} \nabla_1 \cdot (\delta_t \bold{F}_1) = 0 \\

此处 u=(ieαfα)/(ifα)\bold{u}^* = (\sum_{i} \bold{e}_\alpha f_\alpha) / (\sum_{i} f_\alpha) 并非真实流场速度,而 u^=u+Fδt/(2ρ)\hat{\bold{u}} = \bold{u}^* + \bold{F} \delta_t / (2 \rho) 为真实流场速度(也就是式(6)给出的形式)。

基于前面假设的偏微分关系式,我们可以得到 ρt+(ρu^)=0\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \hat{\bold{u}}) = 0

(2)同理,对式(10-3)和式(10-4)计算一阶矩,得:

ρut1+1(ρuu)=1p+F1ρut2+1[(112τ)αeαeαfα(1)]+δt2F1t1+121(αeαeαF1α)=0\frac{\partial \rho \bold{u}^*}{\partial t_1} + \nabla_1 \cdot (\rho \bold{u}^* \bold{u}^*) = -\nabla_1 p + \bold{F}_1 \\ \frac{\partial \rho \bold{u}^*}{\partial t_2} + \nabla_1 \cdot \left[\left(1 - \frac{1}{2 \tau}\right) \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(1)} \right] + \frac{\delta_t}{2} \frac{\partial \bold{F}_1}{\partial t_1} + \frac{1}{2} \nabla_1 \cdot \left( \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{1 \alpha} \right) = 0

其中 p=ρcs2p = \rho c_s^2

根据式(10-2),有:

αeαeαfα(1)=τ[δtt1(αeαeαfα(0))+δt1(αeαeαeαfα(0))αeαeαF1α]\begin{aligned} \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(1)} &= -\tau \left[ \delta_t \frac{\partial}{\partial t_1}\left( \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(0)} \right) \right. +\\ &\quad \left. \delta_t \nabla_1 \cdot \left( \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(0)} \right) - \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{1 \alpha} \right] \end{aligned}

Π(1)=δt(τ12)[t1(αeαeαfα(0))+1(αeαeαeαfα(0))]=δt(τ12){ρcs2[1u+(1u)T]+uF1+F1u}\begin{aligned} \Pi^{(1)} &= -\delta_t \left( \tau - \frac{1}{2} \right) \left[ \frac{\partial}{\partial t_1}\left( \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(0)} \right) + \nabla_1 \cdot \left( \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \bold{e}_\alpha f_{\alpha}^{(0)} \right) \right] \\ &= -\delta_t \left( \tau - \frac{1}{2} \right) \{\rho c_s^2 [\nabla_1 \bold{u}^* + (\nabla_1 \bold{u}^*)^T] + \bold{u}^*\bold{F}_1 + \bold{F}_1 \bold{u}^* \} \end{aligned}

式(10-4)的一阶矩表示为: ρut2+1Π(1)+δt2F1t1+1(ταeαeαF1α)=0\displaystyle \frac{\partial \rho \bold{u}^*}{\partial t_2} + \nabla_1 \Pi^{(1)} + \frac{\delta_t}{2} \frac{\partial \bold{F}_1}{\partial t_1} + \nabla_1 \cdot \left( \tau \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{1 \alpha} \right) = 0

那么同样根据假设的微分关系,即可还原出一阶矩对应的方程。这里直接写出使用真实流场速度 u^=u+Fδt/(2ρ)\hat{\bold{u}} = \bold{u}^* + \bold{F} \delta_t / (2 \rho) 表示的形式:

(ρu^)t+(ρu^u^)=p+F+{ρν[1u+(1u)T}{ρν[1a+(1a)T]}+δt2ϵ2Ft2+[τδt(uF+Fu)+δt2FF4ρταeαeαFα]\begin{aligned} \frac{\partial (\rho \hat{\bold{u}})}{\partial t} + \nabla \cdot (\rho \hat{\bold{u}} \hat{\bold{u}}) &= -\nabla p + \bold{F} + \nabla \cdot \{ \rho \nu [\nabla_1 \bold{u}^* + (\nabla_1 \bold{u}^*)^T \} \\ &\quad - \nabla \cdot \{ \rho \nu [\nabla_1 \bold{a} + (\nabla_1 \bold{a})^T] \} + \frac{\delta_t}{2} \epsilon^2 \frac{\partial \bold{F}}{\partial t_2} \\ &\quad+ \nabla \cdot \left[ \tau \delta_t (\bold{u^* F} + \bold{F u^*}) + \delta_t^2 \frac{\bold{FF}}{4 \rho} - \tau \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha} \right] \end{aligned}

其中 a=δtF/2ρ\bold{a} = \delta_t \bold{F} / 2 \rhoν=(τ12)cs2δt\nu = (\tau - \frac{1}{2}) c_s^2 \delta_t 为流体运动粘度。 通过对比N-S方程,可见其误差项为:

Err={ρν[1a+(1a)T]}+δt2ϵ2Ft2+[τδt(uF+Fu)+δt2FF4ρταeαeαFα]\text{Err} = - \nabla \cdot \{ \rho \nu [\nabla_1 \bold{a} + (\nabla_1 \bold{a})^T] \} + \frac{\delta_t}{2} \epsilon^2 \frac{\partial \bold{F}}{\partial t_2} + \nabla \cdot \left[ \tau \delta_t (\bold{u^* F} + \bold{F u^*}) + \delta_t^2 \frac{\bold{FF}}{4 \rho} - \tau \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha} \right]

但上述的展开方式和Wagner等[5]使用Taylor展开的结果并不一致。 Li 等[4:3] 指出这种错误的来源是:上文将 fα(0)=fα(eq)(ρ,u)f_{\alpha}^{(0)} = f_{\alpha}^{(eq)}(\rho, \bold{u}^*),从而得到了 αeαfα(1)=0\sum_{\alpha} \bold{e}_{\alpha} f_{\alpha}^{(1)} = 0。 然而实际上 fα(0)=fα(eq)(ρ,u^)f_{\alpha}^{(0)} = f_{\alpha}^{(eq)}(\rho, \hat{\bold{u}}) ,从而有 αeαfα(1)=δtF1/2\sum_{\alpha} \bold{e}_{\alpha} f_{\alpha}^{(1)} = -\delta_t \bold{F}_1 / 2

修正后的 Chapman-Enskog 展开

因此,需要将原本的 LBE 等效地修改为:

fα(x+eαδt,t+δt)fα(x,t)=F^α1τ[fα(x,t)fα(eq)(ρ,u^)](11)f_\alpha (\bold{x} + \bold{e}_\alpha \delta_t, t+\delta_t) - f_\alpha (\bold{x}, t) = \hat{F}_{\alpha} -\frac{1}{\tau} \left[ f_\alpha (\bold{x}, t) - f_\alpha^{(eq)} (\rho, \hat{\bold{u}}) \right] \tag{11}

其中 F^α=Fα1τ(fα(eq)(ρ,u^)fα(eq)(ρ,u))\hat{F}_{\alpha} = F_{\alpha} - \frac{1}{\tau} (f_\alpha^{(eq)} (\rho, \hat{\bold{u}}) - f_\alpha^{(eq)} (\rho, \bold{u}^*)) 为基于原始源项 FαF_{\alpha} 修改而来的等效源项。并且需要强调的是,式(11)中的平衡态采用真实流场速度 u^\hat{\bold{u}} 计算。 在式(11)这一等效公式上,执行与上一节一致的 Chapman-Enskog 展开后,可得到还原的N-S方程为:

(ρu^)t+(ρu^u^)=p+F+{ρν[1u^+(1u^)T}+[(τ12)δt(u^F+Fu^)ταeαeαF^α](12)\begin{aligned} \frac{\partial (\rho \hat{\bold{u}})}{\partial t} + \nabla \cdot (\rho \hat{\bold{u}} \hat{\bold{u}}) &= -\nabla p + \bold{F} + \nabla \cdot \{ \rho \nu [\nabla_1 \hat{\bold{u}} + (\nabla_1 \hat{\bold{u}})^T \} \\ &\quad + \nabla \cdot \left[ \left(\tau - \frac{1}{2}\right) \delta_t (\hat{\bold{u}}\bold{F} + \bold{F}\hat{\bold{u}}) - \tau \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \hat{F}_{\alpha} \right] \end{aligned} \tag{12}

式(12)的误差项为:

Err=[(τ12)δt(u^F+Fu^)ταeαeαF^α](13)\text{Err} = \nabla \cdot \left[ \left(\tau - \frac{1}{2}\right) \delta_t (\hat{\bold{u}}\bold{F} + \bold{F}\hat{\bold{u}}) - \tau \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \hat{F}_{\alpha} \right] \tag{13}

将 EDM 的源项代入式(13)中,得到: Err=δt2(FF4ρ)\text{Err}=-\delta_t^2 \nabla\cdot\left( \frac{\bold{FF}}{4 \rho} \right)

附录

(A)源项各阶速度矩的推导

这里仅以 αeαeαFα,EDM\displaystyle \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha,\mathrm{EDM}} 的计算举例来简单说明。

αeαeαFα,EDM=αeαeαδtwα[eαFcs2+12cs4(vEDMF+FvEDM):(eαeαcs2[I])]=δtcs2α[eαeα(wαeαF)]+δt2cs4αwαeαeα[(vEDMF+FvEDM):(eαeαcs2[I])]\begin{aligned} \sum_{\alpha} \bold{e}_{\alpha} \bold{e}_{\alpha} F_{\alpha,\mathrm{EDM}} &= \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \cdot \delta_t w_\alpha \left[ \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} + \right.\\ &\quad\left. \frac{1}{2 c_s^4} \left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\ &= \frac{\delta_t}{c_s^2} \sum_{\alpha} \left[ \bold{e}_\alpha \bold{e}_\alpha (w_\alpha \bold{e}_\alpha \cdot \bold{F}) \right] + \\ &\quad \frac{\delta_t}{2 c_s^4} \sum_{\alpha} w_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \cdot [\left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}])] \end{aligned}

一方面,对于 α[eαeα(wαeαF)]\displaystyle \sum_{\alpha} \left[ \bold{e}_\alpha \bold{e}_\alpha (w_\alpha \bold{e}_\alpha \cdot \bold{F}) \right] 这个矩阵,它的第 ii 行第 jj 列写作

kFkα(wαeαieαjeαk)=kFk0=0\sum_{k} F_{k} \sum_{\alpha}(w_{\alpha} e_{\alpha i} e_{\alpha j} e_{\alpha k}) = \sum_{k} F_{k} \cdot 0 = 0

另一方面,已知 vEDM=u+F2ρδt\bold{v}_{\rm{EDM}} = \bold{u}^{*} + \frac{\bold{F}}{2 \rho} \delta_{t},由于 (vEDMF+FvEDM)\left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) 为矩阵。所以,下文为方便起见,我们记

[B]=vEDMF+FvEDM=uF+Fu+δtρFF[\bold{\mathbb{B}}] = \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} = \bold{u}^{*} \bold{F} + \bold{F} \bold{u}^{*} + \frac{\delta_t}{\rho}\bold{F}\bold{F}

[B]:(eαeαcs2[I])[\bold{\mathbb{B}}] : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) 是一个标量。
对于矩阵 [A]=αwαeαeα{[B]:(eαeαcs2[I])}\displaystyle [\bold{\mathbb{A}}] = \sum_{\alpha} w_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \cdot \{[\bold{\mathbb{B}}] : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}])\} ,它的第 ii 行第 jjAij\mathbb{A}_{ij} 写作

Aij=αwαeαieαj[klBkl(eαkeαlcs2δkl)]=klBklα{wαeαieαj(eαkeαlcs2δkl)}=klBklcs4(δilδjk+δikδjl)=(Bij+Bji)cs4\begin{aligned} \mathbb{A}_{ij} &= \sum_{\alpha} w_{\alpha} e_{\alpha i} e_{\alpha j} \left[ \sum_{k} \sum_{l} \mathbb{B}_{kl} (e_{\alpha k} e_{\alpha l} - c_s^2 \delta_{kl}) \right] \\&= \sum_{k} \sum_{l} \mathbb{B}_{kl} \sum_{\alpha} \left\{ w_{\alpha} e_{\alpha i} e_{\alpha j} (e_{\alpha k} e_{\alpha l} - c_s^2 \delta_{kl}) \right\} \\&= \sum_{k} \sum_{l} \mathbb{B}_{kl} \cdot c_s^4 (\delta_{il} \delta_{jk} + \delta_{ik} \delta_{jl}) \\&= (\mathbb{B}_{ij} +\mathbb{B}_{ji}) c_s^4 \end{aligned}

因为 [B][\mathbb{B}] 是对称矩阵,所以 Aij=2cs4Bij\mathbb{A}_{ij} =2 c_s^4 \mathbb{B}_{ij}。也就有:

αeαeαFα,EDM=0+δt2cs4αwαeαeα[(vEDMF+FvEDM):(eαeαcs2[I])]=δt(vEDMF+FvEDM)=δt(uF+Fu+δtρFF)\begin{aligned} \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha,\mathrm{EDM}} &= \vec{\bold{0}} + \frac{\delta_t}{2 c_s^4} \sum_{\alpha} w_{\alpha} \bold{e}_\alpha \bold{e}_\alpha \cdot [\left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}])] \\&= \delta_t \left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) \\&= \delta_t \left( \bold{u}^{*} \bold{F} + \bold{F} \bold{u}^{*} + \frac{\delta_t}{\rho}\bold{F}\bold{F} \right) \end{aligned}

综上, αeαeαFα,EDM=δt(uF+Fu+δtFFρ)\displaystyle \sum_{\alpha} \bold{e}_\alpha \bold{e}_\alpha F_{\alpha,\mathrm{EDM}} = \delta_t \left( \bold{u}^* \bold{F} + \bold{F}\bold{u}^* + \delta_t \frac{\bold{FF}}{\rho} \right) 成立。其他低阶矩均采用类似方法进行计算。当然,这也同样可以拓展至其他源项的速度矩计算。

(B)修正源项的计算

由于 a=δtF/2ρ=u^u\bold{a} = \delta_t \bold{F} / 2 \rho = \hat{\bold{u}} - \bold{u}^* ,则 ρa=δtF/2\rho \bold{a} = \delta_t \bold{F} / 2 。因此:

1τ(fα(eq)(ρ,u^)fα(eq)(ρ,u))=ρwατ[eαacs2+12cs4(u^u^uu):(eαeαcs2[I])]=ρwατ[eαacs2+12cs4(ua+au+aa):(eαeαcs2[I])]=wαδtτ[eαF2cs2+12cs4(12(uF+Fu)+δtFF4ρ):(eαeαcs2[I])]\begin{aligned} & \frac{1}{\tau} (f_\alpha^{(eq)} (\rho, \hat{\bold{u}}) - f_\alpha^{(eq)} (\rho, \bold{u}^*)) \\=& \frac{\rho w_{\alpha}}{\tau} \left[ \frac{\bold{e}_{\alpha} \cdot \bold{a}}{c_s^2} + \frac{1}{2 c_s^4} (\hat{\bold{u}}\hat{\bold{u}} - \bold{u^* u^*}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\=& \frac{\rho w_{\alpha}}{\tau} \left[ \frac{\bold{e}_{\alpha} \cdot \bold{a}}{c_s^2} + \frac{1}{2 c_s^4} ( \bold{u^* a} + \bold{a u^*} + \bold{aa}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\=& \frac{w_{\alpha} \delta_t}{\tau} \left[ \frac{\bold{e}_{\alpha} \cdot \bold{F}}{2 c_s^2} + \frac{1}{2 c_s^4} \left( \frac{1}{2} (\bold{u^* F} + \bold{F u^*}) + \delta_t \frac{\bold{FF}}{4 \rho} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \end{aligned}

由于 EDM 源项的表达式为:

Fα,EDM=δtwα[eαFcs2+12cs4(u^F+Fu^):(eαeαcs2[I])]F_{\alpha,\mathrm{EDM}} = \delta_t w_\alpha \left[ \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} + \frac{1}{2 c_s^4} \left( \hat{\bold{u}} \bold{F} + \bold{F} \hat{\bold{u}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right]

因此,其对应修正源项为

Fα,EDM1τ(fα(eq)(ρ,u^)fα(eq)(ρ,u))=eαFcs2(112τ)+wαδt2cs4{[(12τ1)(uF+Fu)(aF+Fa)δt4ρτFF]:(eαeαcs2[I])}\begin{aligned} & F_{\alpha,\mathrm{EDM}} - \frac{1}{\tau} (f_\alpha^{(eq)} (\rho, \hat{\bold{u}}) - f_\alpha^{(eq)} (\rho, \bold{u}^*)) \\=& \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} (1 - \frac{1}{2 \tau}) + \\& \frac{w_{\alpha} \delta_t}{2 c_s^4} \left\{ \left[ (\frac{1}{2 \tau} - 1) (\bold{u^* F} + \bold{F u^*}) - (\bold{a F} + \bold{F a}) \right.\right. \\& \left.\left. - \frac{\delta_t}{4 \rho \tau} \bold{FF} \right] : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right\} \end{aligned}


  1. Kupershtokh, A. L. New method of incorporating a body force term into the lattice Boltzmann equation. in Proceeding of the 5th international EHD workshop 241–246 (Poitiers, France, 2004). ↩︎ ↩︎

  2. A.L. Kupershtokh, D.A. Medvedev, & D.I. Karpov (2009). On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 58(5), 965-974. DOI:10.1016/j.camwa.2009.02.024. ↩︎ ↩︎ ↩︎

  3. Q. Li, K.H. Luo, Q.J. Kang, Y.L. He, Q. Chen, & Q. Liu (2016). Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105. DOI:10.1016/j.pecs.2015.10.001. ↩︎

  4. Li, Q., Zhou, P., & Yan, H. (2016). Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Physical Review E, 94, 043313. DOI:10.1103/PhysRevE.94.043313. ↩︎ ↩︎ ↩︎ ↩︎

  5. Wagner, A. (2006). Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Physical Review E, 74, 056703. DOI: 10.1103/PhysRevE.74.056703. ↩︎

基于这篇的内容,我用 Python 写了一份对单种颗粒系统进行粗粒化的代码。

其具体使用流程为:

  1. obj = CG_mono_3D(...): 初始化。
  2. obj.set_domain(...): 设置矩形的计算域。
  3. obj.get_CG_data(R, CG_width): 对 R 点进行粗粒化,其粗粒化的长度为 CG_width
DEM_CG_mono.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""
Function to convert DEM simulation data into coarse graining field.

NOTE:
This function is used for graunlar system which consists of single type of particles.
"""
import typing as _T

import numpy as np
import numba as nb
import numpy.typing as npt

from tqdm import tqdm
from scipy.special import erf
from scipy.integrate import simpson


@nb.jit(nopython=True)
def CG_Gaussian(r: npt.NDArray[np.double], w: float, V_w: float) -> float:
"""Gaussian Coarse Graining function.

Parameters
====
r: numpy.NDArray[double]
Relative position vector, whose shape is `(3,)`.
w: float
Course grain width `w`.
V_w: float
The coefficient of Gaussian Coarse Graining function.

Return
===
W: float
Average weight.
"""
c = 3 * w # Coarse graining cut-off width
c_2 = c**2

# Norm of vector `r`
r_norm: float = r[0]**2 + r[1]**2 + r[2]**2
# define weight
W = 0.0
if r_norm < c_2:
W = np.exp(-r_norm / (2 * w**2)) / V_w
return W


@nb.jit("f8[:, :](f8, f8, f8[:], f8[:])",
nopython=True, parallel=True, nogil=True)
def SIGMA_q_k(mass_i: float,
W_i: float,
vel_i: npt.NDArray[np.double],
U: npt.NDArray[np.double]) -> npt.NDArray[np.double]:
"""Calculate part of `sigma_qk` contributed by ball `i`

Parameters
---
mass_i: float
Mass of ball i.
W_i: float
Weight coefficient of ball i.
vel_i: numpy.NDArray[double]
Velocity vector of ball i, whose shape is (3,).
U: numpy.NDArray[double]
Coarse grained velocity vector, whose shape is (3,).

Return
---
res: numpy.NDArray[double]
3x3 Matrix of `sigma_qk`caused by ball i.
"""
res = np.zeros((3,3), dtype=np.double)
for i in nb.prange(3):
for j in nb.prange(3):
res[i, j] += mass_i * W_i * \
(vel_i[i] - U[i]) * (vel_i[j] - U[j])
return res


@nb.jit("f8[:, :](f8[:], f8[:], f8)",
nopython=True, parallel=True, nogil=True)
def SIGMA_q_c(F_ij: npt.NDArray[np.double],
l_ij: npt.NDArray[np.double],
W_ij: float) -> npt.NDArray[np.double]:
"""Calculate part of `sigma_qk` contributed by contact from i to j.

Parameters
---
F_ij: numpy.NDArray[double]
Contact force vector, pointing from i to j.
l_ij: numpy.NDArray[double]
Contact branch vector, pointing from i to j.
W_ij: float
Integrated weight coefficient, from i to j.

Return
---
res: numpy.NDArray[double]
3x3 Matrix of `sigma_qc`caused by contact from i to j.
"""
res = np.zeros((3,3), dtype=np.double)
for i in nb.prange(3):
for j in nb.prange(3):
res[i,j] = F_ij[i] * l_ij[j] * W_ij
return res


@nb.jit("f8[:](f8[:], f8[:], f8[:,:], b1, b1[:])",
nopython=True)
def get_distance(R: npt.NDArray[np.double],
r_i: npt.NDArray[np.double],
lims: npt.NDArray[np.double],
hasPeriodic: bool,
isPeriodic: npt.NDArray[np.bool_]):
dR = r_i - R
if hasPeriodic:
for q in range(3):
if not isPeriodic[q]:
continue
# Deal with periodic boundary
_r_2L = abs(r_i[q] - lims[q,0])
_r_2R = abs(r_i[q] - lims[q,1])
_R_2L = abs(R[q] - lims[q,0])
_R_2R = abs(R[q] - lims[q,1])
r_near_left = _r_2L < _r_2R
R_near_left = _R_2L < _R_2R
r2R = abs(dR[q])
if R_near_left and (not r_near_left):
tmp = _r_2R + _R_2L
if tmp < r2R: dR[q] = -tmp
elif (not R_near_left) and r_near_left:
tmp = _r_2L + _R_2R
if tmp < r2R: dR[q] = tmp
return -dR


class CG_mono_3D:
def __init__(self,
rho: float,
pos: npt.NDArray[np.double],
vel: npt.NDArray[np.double],
radius: npt.NDArray[np.double],
ball_id: npt.NDArray[np.int_],
contact_force: npt.NDArray[np.double],
contact_branch: npt.NDArray[np.double],
contact_end_ball: npt.NDArray[np.double],
in_flow: _T.Optional[npt.NDArray[np.bool_]] = None,
dp: _T.Optional[float] = None, *,
progress_bar: bool = False
) -> None:
"""
Parameters
----
rho: float
Density of all particles.
pos: numpy.NDArray[double]
Position vector, whose shape is `[particle_num, 3]`.
vel: numpy.NDArray[double]
Velocity vector, whose shape is `[particle_num, 3]`.
radius: numpy.NDArray[double]
Radius list, whose shape is `(particle_num,)`.
ball_id: numpy.NDArray[int]
ID number of all balls.
contact_force: numpy.NDArray[double]
Contact force list, whose shape is `[contact_num, 3]`.
contact_branch: numpy.NDArray[double]
List of contact branch, whose shape is `[contact_num, 3]`. Each
line `i` means the distance vector from `contact_end_ball[i, 0]`
to `contact_end_ball[i, 1]`.
contact_end_ball: numpy.NDArray[double]
List of contacted balls tuple, whose shape is `[contact_num, 2]`.
in_flow: numpy.NDArray[np.bool_], optional
Mask array of ball-in-flow, whose shape is `(particle_num,)`.
dp: float, optional
Mean diameter of all particles.
progress_bar: bool, optional, keyword argument only.
Switch to control whether show the process. Default is False.

Note
----
1. Take the `i`-th ball for example, its ball ID is `ball_id[i]`.
And its radius and velocity are `radius[i]` and `vel[i,:]`,
respectively. Note that `ball_id[i]` is not equal to `i`.
2. For the `j`-th contact, The ID of two contacted balls are
`b1 = contact_end_ball[j, 0]`, and `b2 = contact_end_ball[j ,1]`.
"""
self.particle_num = pos.shape[0]
self.contact_num = contact_force.shape[0]

self._id = ball_id # Ball id
self.pos = pos # Position vector
self.vel = vel # Velocity vector
self.radius = radius # Ball radius

# Ball density
# |=> NOTE: Since this function is used for mono-disperse system,
# The density of particles are constant.
self.rho = rho

# => Contact properties
self.c_force = contact_force # Contact force
self.c_branch = contact_branch # Contact branch
self.c_ends = contact_end_ball # Contact end ball tuple

# => Optional parameters
# Ball-in-flow mask array.
self.inflow = in_flow
# Mean particle diameter
if dp is None:
dp = np.mean(radius) * 2
else:
self.dp = dp

# => Mass array
self.mass = 4/3 * np.pi * np.power(radius, 3) * rho

# => Ball-ID position array.
# For example, `self._c_end_id[j,0]` corresponds to the first end
# ball of `j`-th contact (whose ID is `self.c_ends[j,0]`).
# And we have `self.c_ends[j,0] = self._id[self._c_end_id[j,0]]`.
self._c_end_id = [
[np.where(ball_id == contact_end_ball[i,0])[0][0],
np.where(ball_id == contact_end_ball[i,1])[0][0]]
for i in range(self.contact_num)
]
self._c_end_id = np.array(self._c_end_id, dtype=np.intc)

# Unit normal of each contact
self.contact_norm = []

# Real contact branch vector, pointing from contact point to balls' center
self.branch_vector_list = self._get_branch_vector()

# => STATUS of domain config
self._domain_init = False

# => Max search width
self._MAX_width = 7

# => Option to show progress bar
self._use_tqdm = progress_bar
pass

def set_domain(self,
xlim: _T.Tuple[float, float],
ylim: _T.Tuple[float, float],
zlim: _T.Tuple[float, float],
periodic_flag: _T.Tuple[bool, bool, bool]):
"""Function to set cuboid domain of coarse graining.

Parameters
----
xlim: (float, float)
Range of x-coordinate, contains with `(xMin, xMax)`.
ylim: (float, float)
Range of y-coordinate, contains with `(yMin, yMax)`.
zlim: (float, float)
Range of z-coordinate, contains with `(zMin, zMax)`.
periodic_flag: (bool, bool, bool)
Flag tuple to determinate which axis is periodic.
"""
xlim = (min(*xlim), max(*xlim))
ylim = (min(*ylim), max(*ylim))
zlim = (min(*zlim), max(*zlim))
self._lims = np.array([xlim, ylim, zlim])

self._isPeriodic = np.array(periodic_flag, dtype=np.bool_)
self._hasPeriodic = np.any(periodic_flag)

# Update state
self._domain_init = True

def get_CG_data(self,
R: npt.NDArray[np.double],
w: float):
"""
Get coarse grainning data at center node `R`.

Parameter
---
R: numpy.NDArray[double]
Center of coarse graining node.
w: float
Width of coarse graining.

Return
---
rho: float
Coarse grained density at node `R`.
U: numpy.NDArray[double]
Coarse grained velocity at node `R`.
sigma: numpy.NDArray[double]
Coarse grained stress tensor at node `R`.
"""
assert R.shape == (3,)
if self._domain_init is False:
raise Exception("Exception: `self.set_domain` haven't run to set domain.")

V_w = self.get_CG_factors(w)

rho, U = self.get_CG_vel(R, w, V_w)
sigma_qk = self.get_CG_sigma_qk(R, w, U, V_w)
sigma_qc = self.get_CG_sigma_qc(R, w, V_w)
sigma = sigma_qk + sigma_qc
return rho, U, sigma

# ============================ #
# === Sub-process function === #
# ============================ #

def get_CG_vel(self,
R: npt.NDArray[np.double],
CG_width: float,
V_w: float) -> _T.Tuple[float, npt.NDArray[np.double]]:
"""Get velocity and density.

Parameter
---
R: numpy.NDArray[double]
Center of coarse graining node.
CG_width: float
Width of coarse graining.
V_w: float
The coefficient of Gaussian Coarse Graining function.

Return
---
rho: float
Coarse grained density at node `R`.
U: numpy.NDArray[double]
Coarse grained velocity at node `R`.
"""
MAX_width = self._MAX_width * CG_width

# Variable to store result
rho, Jx, Jy, Jz = 0.0, 0.0, 0.0, 0.0

# Start loop
_ball_iter = range(self.particle_num)
if self._use_tqdm:
print("|> [Get coarse graining velocity]")
_ball_iter = tqdm(_ball_iter, unit="Ball")

for i in _ball_iter:
# Skip nodes not in flow group
if (self.inflow is not None) and (not self.inflow[i]):
continue

# Get distance vector
dR = self._get_distance_vec(R, self.pos[i,:])

# Skip node which too far from center node `R`.
if np.linalg.norm(dR) >= MAX_width:
continue

# Get weight
W_i = CG_Gaussian(dR, CG_width, V_w)

# Assign value
rho += self.mass[i] * W_i
Jx += self.mass[i] * W_i * self.vel[i, 0]
Jy += self.mass[i] * W_i * self.vel[i, 1]
Jz += self.mass[i] * W_i * self.vel[i, 2]
pass

# Get velocity
if rho != 0:
U = np.array([Jx / rho, Jy / rho, Jz / rho], dtype=np.double)
else:
U = np.zeros((3,))
return rho, U

def get_CG_sigma_qk(self,
R: npt.NDArray[np.double],
CG_width: float,
U: npt.NDArray[np.double],
V_w: float) -> npt.NDArray[np.double]:
"""
Get stress tensor contributed by kinetic energy.

Parameter
---
R: numpy.NDArray[double]
Center of coarse graining node.
CG_width: float
Width of coarse graining.
U: numpy.NDArray[double]
Coarse grained velocity at node `R`.
V_w: float
The coefficient of Gaussian Coarse Graining function.

Return
---
sigma_qk: numpy.NDArray[double]
Stress tensor contributed by kinetic energy.

Note
---
$\sigma_{\\alpha \\beta}^{q(\mathrm{k})} = \sum_{i \in q} m_i v_{i \\alpha}^{'} v_{i \\beta}^{'} W(\\boldsymbol{r} - \\boldsymbol{r}_i (t))$

where:
* $v_{i \\alpha}^{'} = u_{\\alpha}^{q}(\\boldsymbol{r}, t) - u_{i,\\alpha}$ is the $\\alpha$ component of the fluctuation velocity of particle i.
"""
MAX_width = self._MAX_width * CG_width

# Result array
sigma_qk = np.zeros((3,3), dtype=np.double)

# Start loop
_ball_iter = range(self.particle_num)
if self._use_tqdm:
print("|> [Get stress tensor contributed by kinetic energy]")
_ball_iter = tqdm(_ball_iter, unit="Ball")

for i in _ball_iter:
# Skip nodes not in flow group
if (self.inflow is not None) and (not self.inflow[i]):
continue

# Get distance vector
dR = self._get_distance_vec(R, self.pos[i,:])

# Skip node which too far from center node `R`.
if np.linalg.norm(dR) >= MAX_width:
continue

W_i = CG_Gaussian(dR, CG_width, V_w)
sigma_qk += SIGMA_q_k(self.mass[i], W_i, self.vel[i, :], U)
pass

return sigma_qk

def get_CG_sigma_qc(self,
R: npt.NDArray[np.double],
CG_width: float,
V_w: float) -> npt.NDArray[np.double]:
"""
Get stress tensor contributed by contact.

Parameter
---
R: numpy.NDArray[double]
Center of coarse graining node.
CG_width: float
Width of coarse graining.
V_w: float
The coefficient of Gaussian Coarse Graining function.

Return
---
sigma_qc: numpy.NDArray[double]
Stress tensor contributed by contact.

Note
---
$\sigma_{\\alpha \\beta}^{q(\mathrm{ck})} = \sum_{i \in q} \sum\limits_{j \in \bar{Q}}^{j \neq i} F_{ij,\\alpha} l_{ij,\\beta} \int_{0}^{1} W(\\boldsymbol{r} - \\boldsymbol{r}_i + s \\boldsymbol{l}_{ij}) \mathrm{d}s$

where:
* $v_{i \\alpha}^{'} = u_{\\alpha}^{q}(\\boldsymbol{r}, t) - u_{i,\\alpha}$ is the $\\alpha$ component of the fluctuation velocity of particle i.
* $\\bar{Q}$ is the union of all particles classes, $q$.
* $\\boldsymbol{l}_{ij}$ is as the branch vector between two particles, i and j. (from i to j)
* $\\boldsymbol{F}_{ij}$ is contact force vector between two particles, i and j. (from i to j)
"""
MAX_width = self._MAX_width * CG_width

# Result array
sigma_qc = np.zeros((3,3), dtype=np.double)

# Start loop
_c_iter = range(self.contact_num)
if self._use_tqdm:
print("|> [Get stress tensor contributed by contact]")
_c_iter = tqdm(_c_iter, unit="Contact")

for i in _c_iter:
# ID of two balls on the i-th contact
ball_i1 = self._c_end_id[i, 0]
ball_i2 = self._c_end_id[i, 1]

# contact force (from i1 to i2)
F_i12 = self.c_force[i, :]

# Deal with ball_i1
dR1 = self._get_distance_vec(R, self.pos[ball_i1, :])
if np.linalg.norm(dR1) < MAX_width:
# contact branch (from i1 to i2)
l_i1 = self.branch_vector_list[0][i]
# integration weight
W_ij = self._W_ij_4_sigma_qc(dR1, l_i1, CG_width, V_w)
if W_ij != 0:
sigma_qc += SIGMA_q_c(F_i12, l_i1, W_ij)

# Deal with ball_i2
dR2 = self._get_distance_vec(R, self.pos[ball_i2, :])
if np.linalg.norm(dR2) < MAX_width:
# contact branch (from i2 to i1)
l_i2 = self.branch_vector_list[1][i]
# integration weight
W_ij = self._W_ij_4_sigma_qc(dR2, l_i2, CG_width, V_w)
if W_ij != 0:
sigma_qc += SIGMA_q_c(-F_i12, l_i2, W_ij)

return sigma_qc

# ========================== #
# === Auxiliary function === #
# ========================== #
def _W_ij_4_sigma_qc(self, dR, l_ij, CG_width, V_w) -> float:
"""
Parameters
---
dR: numpy.NDArray[double]
Relative position vector, whose shape is `(3,)`.
l_ij: numpy.NDArray[double]
Contact branch vector, whose shape is `(3,)`.
CG_width: float
Width of coarse graining.
V_w: float
The coefficient of Gaussian Coarse Graining function.

Return
----
W_ij: float
Integrated weight coefficient used in the calculation of
`sigma_qc`.
"""
_func = lambda s: CG_Gaussian(dR + s * l_ij, CG_width, V_w)
_x = np.linspace(0, 1, 201)
_y = np.array([_func(s) for s in _x])
W_ij = simpson(_y, x=_x)
return W_ij

def _get_distance_vec(self,
R: npt.NDArray[np.double],
r_i: npt.NDArray[np.double]) -> npt.NDArray[np.double]:
"""Get distance between center of coarse graining node `R` and
loaction of particle's center `r_i`.

Parameter
---
R: numpy.NDArray[double]
Center of coarse graining node.
r_i: numpy.NDArray[double]
Loaction of particle's center.

Return
---
dR: numpy.NDArray[double]
Distance between `R` and `r_i` (i.e. `R - r_i`), with periodic
boundary considered.
"""
dR = get_distance(R, r_i, self._lims, self._hasPeriodic, self._isPeriodic)
return dR

@property
def progress_bar(self):
"""Bool flag to control whether show the process by tqdm."""
return self._use_tqdm

@progress_bar.setter
def progress_bar(self, value: bool):
self._use_tqdm = bool(value)

@property
def search_width_coef(self):
"""Coefficient of search radius, and the search radius is
`self.search_width_coef * CG_width`.
"""
return self._MAX_width

@search_width_coef.setter
def search_width_coef(self, value: float):
if value <= 0:
raise ValueError("`search_width_coef` should be positive")
elif value <= 3:
raise ValueError("`search_width_coef` should be larger than cut off width coefficient (3.0)")
else:
self._MAX_width = value

def get_CG_factors(self, w: float) -> float:
"""Calculate the coefficient of Gaussian Coarse Graining function.

Parameter
----
w: float
Course grain width `w`.

Return
----
V_w: float
The coefficient of Gaussian Coarse Graining function.
"""
c = 3 * w
V_w = np.sqrt(8) * np.pi**1.5 * w**3 * erf(c/w/np.sqrt(2)) - \
4 * c * w**2 * np.pi * np.exp(-c**2 / w**2 / 2)
return V_w

def _get_branch_vector(self) -> list[list[np.ndarray]]:
"""Calculate the real contact branch vector, because `self.c_branch`
only means the distance of the 2 balls' spherical centers on the same
contact.
"""
branch_vector_list = [[], []]
self.contact_norm = []

for i in range(self.contact_num):
id_i = self._c_end_id[i, 0]
id_j = self._c_end_id[i, 1]
r_i = self.radius[id_i]
r_j = self.radius[id_j]

# Distance of the 2 balls' spherical centers (from i to j)
l_ij = self.c_branch[i, :]
l_norm = np.linalg.norm(l_ij)
N = l_ij / l_norm

delta = r_i + r_j - l_norm

l_i = -N * (r_i - delta / 2)
l_j = N * (r_j - delta / 2)
branch_vector_list[0].append(l_i)
branch_vector_list[1].append(l_j)
self.contact_norm.append(N)

return branch_vector_list

离散单元法(Discrete Element Method,简称DEM)是颗粒流数值模拟的重要数值方法,被用于各种各样的颗粒流定量研究中。颗粒流的粗粒化(Coarse Graining),便是将颗粒流流场的大量数据转化为连续场数据的数值方法。

在开始介绍之前,先简要列出主要的参考资料:
  • Breard, E. C. P., Dufek, J., Fullard, L., & Carrara, A. (2020). The Basal Friction Coefficient of Granular Flows With and Without Excess Pore Pressure: Implications for Pyroclastic Density Currents, Water‐Rich Debris Flows, and Rock and Submarine Avalanches. Journal of Geophysical Research: Solid Earth, 125(12), e2020JB020203. DOI:10.1029/2020JB020203.
  • Lacaze, L., & Kerswell, R. R. (2009). Axisymmetric Granular Collapse: A Transient 3D Flow Test of Viscoplasticity. Physical Review Letters, 102(10), 108305. DOI:10.1103/PhysRevLett.102.108305.
  • Weinhart, T., Labra, C., Luding, S., & Ooi, J. Y. (2016). Influence of coarse‐graining parameters on the analysis of DEM simulations of silo flow. Powder Technology, 293, 138–148. DOI:10.1016/j.powtec.2015.11.052

单种颗粒的粗粒化

为简单起见,先从仅存在单种球形颗粒的颗粒流开始说起,并且只考虑获取空间内一点 r\boldsymbol{r}tt 时刻的粗粒化数据。

粗粒化函数

在这里,引入高斯函数

W(r)={1Vwexp(r22w),r<c0,otherwiseW(\boldsymbol{r}) = \begin{cases} \frac{1}{V_w} \exp{\left(- \frac{\vert\boldsymbol{r}\vert^2}{2w} \right)} ,& {\vert\boldsymbol{r}\vert} < c \\ 0 ,& \text{otherwise} \end{cases}

其中: ww 为粗粒化宽度; c=3wc = 3 w 为粗粒化截断长度; VwV_w 是确保其密度积分等于总质量的系数

Vw=22w3π32erf(c22w)4cw2πexp(c22w2)V_w = 2 \sqrt{2} \cdot w^3 \pi^{\frac{3}{2}} \mathrm{erf}\left( \frac{c \sqrt{2}}{2 w} \right) - 4 c w^2 \pi \exp{\left( \frac{- c^2}{2 w^2} \right)}

Weinhart 等建议 ww 的取值范围应在 [0.75dmean,1.25dmean][0.75 d_{\mathrm{mean}}, 1.25 d_{\mathrm{mean}}] 之间,其中 dmeand_{\mathrm{mean}} 为平均颗粒直径。

密度和动量的计算

tt 时刻,单种颗粒的集合为 qq 。对于其中的第 ii 个球,其位置矢量为 ri\boldsymbol{r}_i ,质量为 mim_i ,速度为 ui\boldsymbol{u}_i

密度的粗粒化表达式为:

ρ(r,t)=iqmiW(rri(t))\rho(\boldsymbol{r}, t) = \sum\limits_{i \in q} m_i W(\boldsymbol{r} - \boldsymbol{r}_{i}(t))

动量的粗粒化表达式为:

j(r,t)=iqmiuiW(rri(t))\boldsymbol{j}(\boldsymbol{r}, t) = \sum\limits_{i \in q} m_i \boldsymbol{u}_i W(\boldsymbol{r} - \boldsymbol{r}_{i}(t))

所以,速度的计算需要通过 j\boldsymbol{j}ρ\rho 完成:

u(r,t)=j(r,t)/ρ(r,t)\boldsymbol{u}(\boldsymbol{r}, t) = \boldsymbol{j}(\boldsymbol{r}, t) / \rho(\boldsymbol{r}, t)

根据 W(r)W(\boldsymbol{r}) 的定义,当 rri(t)c\vert \boldsymbol{r} - \boldsymbol{r}_{i}(t) \vert \ge c 时, W(rri(t))=0W(\boldsymbol{r} - \boldsymbol{r}_{i}(t)) = 0
因此在实际计算中可根据这一点跳过某些球的计算。

应力张量的计算

应力张量 [σ]=σαβ[\boldsymbol{\sigma}] = \sigma_{\alpha\beta} 被表示为由接触作用产生的部分 σαβ(c)\sigma_{\alpha\beta}^{(c)} ,以及由动能作用产生的部分 σαβ(k)\sigma_{\alpha\beta}^{(k)} 。即:

σαβ=σαβ(k)+σαβ(c)\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{(k)} + \sigma_{\alpha\beta}^{(c)}

对于 σαβ(k)\sigma_{\alpha\beta}^{(k)} ,有:

σαβ(k)(r,t)=iqmivi,αvi,βW(rri(t))\sigma_{\alpha\beta}^{(k)}(\boldsymbol{r}, t) = \sum\limits_{i \in q} m_i v_{i,\alpha}^{'} v_{i,\beta}^{'} W(\boldsymbol{r} - \boldsymbol{r}_{i}(t))

其中 vi,α=ui,αuα(r,t)v_{i,\alpha}^{'} = u_{i,\alpha} - u_{\alpha}(\boldsymbol{r}, t) 为第 ii 个球的速度波动值。

对于 σαβ(c)\sigma_{\alpha\beta}^{(c)} ,考虑第 ii 个球的所有接触:

σαβ(c)(r,t)=iqjQˉjiFij,αlij,β01W(rri(t)+slij)ds\sigma_{\alpha\beta}^{(c)}(\boldsymbol{r}, t) = \sum\limits_{i \in q} \sum\limits_{j \in \bar{Q}}^{j \neq i} F_{ij,\alpha} l_{ij,\beta} \int_{0}^{1} W(\boldsymbol{r} - \boldsymbol{r}_{i}(t) + s \boldsymbol{l}_{ij}) \mathrm{d}s

式中

  • jj 是整个颗粒系统 Qˉ\bar{Q} 中的一个球(jij \neq i),并且球 ii 与球 jj 发生接触;
  • Fij\boldsymbol{F}_{ij} 是球 ii 所受到的来自球 jj 接触的力, Fij,αF_{ij,\alpha} 为其 α\alpha 方向分量;
  • lij\boldsymbol{l}_{ij} 是球 ii 与球 jj 的接触矢量(从 iijj), lij,αl_{ij,\alpha} 为其 α\alpha 方向分量。

在实际操作中,对于

01W(rri(t)+slij)ds\int_{0}^{1} W(\boldsymbol{r} - \boldsymbol{r}_{i}(t) + s \boldsymbol{l}_{ij}) \mathrm{d}s

我选择使用复化 Simpson 积分计算其数值,以简化操作。

多种颗粒的粗粒化

假设一个颗粒流系统 Qˉ\bar{Q} 中有 QQ 类颗粒,对于第 qq 类颗粒 qQq \in Q, 可以使用单类颗粒粗粒化的公式计算出:第 qq 类颗粒的粗粒化密度 ρq(r,t)\rho^{q}(\boldsymbol{r}, t) 、速度 uq(r,t)\boldsymbol{u}^{q}(\boldsymbol{r}, t) 和应力张量 σαβq(r,t)\sigma_{\alpha\beta}^{q}(\boldsymbol{r}, t)

所以整个颗粒流系统 Qˉ\bar{Q} 的粗粒化结果为:

ρ(r,t)=qQρq(r,t)u(r,t)=qQuq(r,t)σαβ(r,t)=qQσαβq(r,t)\begin{aligned} \rho(\boldsymbol{r}, t) &= \sum_{q \in Q} \rho^{q}(\boldsymbol{r}, t) \\ \boldsymbol{u}(\boldsymbol{r}, t) &= \sum_{q \in Q} \boldsymbol{u}^{q}(\boldsymbol{r}, t) \\ \sigma_{\alpha\beta}(\boldsymbol{r}, t) &= \sum_{q \in Q} \sigma_{\alpha\beta}^{q}(\boldsymbol{r}, t) \\ \end{aligned}

使用粗粒化数据提取颗粒流流变参数

这里以 μ(I)\mu(I) 流变关系为例子,以上文的文献作为参照。

记速度剪切率张量 γij=uixj+ujxi\gamma_{ij} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} ,其中 uiu_i 源自粗粒化速度场。令:

γijd=γijδij3tr([γ])\gamma_{ij}^{d} = \gamma_{ij} - \frac{\delta_{ij}}{3} \mathrm{tr}([\gamma])

其中 tr([γ])=γxx+γyy+γzz\mathrm{tr}([\gamma]) = \gamma_{xx} + \gamma_{yy} + \gamma_{zz}[γ][\gamma] 的迹。

所以剪切应变率定义为:

γ˙=12γijdγijd|\dot{\gamma}| = \sqrt{\frac{1}{2} {\gamma}_{ij}^{d} {\gamma}_{ij}^{d} }

定义压强为 p=13tr([σ])=(σxx+σyy+σzz)/3p = \frac{1}{3} \mathrm{tr}([\sigma]) = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) / 3,偏应力张量为: [τ]=τij=σijpδij[\tau] = \tau_{ij} = \sigma_{ij} - p \cdot \delta_{ij}, 所以切应力为:

τ=12τijτij|\tau| = \sqrt{\frac{1}{2} \tau_{ij} \tau_{ij} }

简单的粗粒化代码示意

我用 Python 写了一份对单种颗粒系统进行粗粒化的代码,详情见此网页

我的这个 Github Page 大约花了我一天时间从完全不懂到凑活着用。
这里简单分享一下我使用 hexo + hexo-next-theme + giscus 实现这个 Github Page 的参考资料。

  1. 建站
    从零开始用Hexo+GithubPage搭建个人网站(保姆级) - 哔哩哔哩

  2. 使用 Github Action
    如何优雅的使用Github Action服务来将Hexo部署到Github Pages - CSDN博客
    GitHub Pages | Hexo

  3. Katex 渲染公式
    Hexo博客渲染KaTeX数学公式 | Feng’s Blog

  4. Giscus 评论系统
    Hexo 使用 giscus 评论系统 | 404频道
    Hexo 评论系统(Giscus)

注:该文章同步发在知乎专栏CSDN
这里所说的 “简化的格子 Boltzmann 方法” 其实是 Simplified and Highly Stable Lattice Boltzmann Method (SHSLBM)([1], [2], [3], [4])。该方法的特色是仅使用平衡态分布函数、宏观密度、宏观速度进行 LBM 计算,并保证无条件稳定。
下面的内容只是我对相关文献进行简单阅读后的部分整理

单松弛格子 Boltzmann 方法

基本方程

针对流场的 LBGK 演化方程为

fα(r+cα+Δt,t+Δt)fα(r,t)=1τ[fα(r,t)fα(eq)](1)f_{\alpha} (\boldsymbol{r} + \boldsymbol{c}_\alpha + \Delta t, t + \Delta t) - f_{\alpha} (\boldsymbol{r}, t) = -\frac{1}{\tau} \left[ f_{\alpha} (\boldsymbol{r}, t) - f_{\alpha}^{(eq)} \right] \tag{1}

其中 fα(r,t)f_{\alpha} (\boldsymbol{r}, t)tt 时刻在 r\boldsymbol{r} 处沿着 cα\boldsymbol{c}_\alpha 方向的密度分布函数, τ\tau 为 BGK 碰撞项的松弛时间。 fα(eq)f_{\alpha}^{(eq)}cα\boldsymbol{c}_\alpha 方向的平衡态分布

fα(eq)=ρwα[1+cαucs2+(cαu)22cs4uu2cs2](2)f_{\alpha}^{(eq)} = \rho w_\alpha \left[ 1 + \frac{\boldsymbol{c}_\alpha \cdot \boldsymbol{u}}{c_s^2} + \frac{(\boldsymbol{c}_\alpha \cdot \boldsymbol{u})^2}{2 c_s^4} - \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2 c_s^2} \right] \tag{2}

式 (2) 中 ρ\rho 为流体密度, u=(ux,uy,uz)T\boldsymbol{u} = (u_x, u_y, u_z)^T 为流体宏观速度, wαw_\alphacα\boldsymbol{c}_\alpha 的权重系数, csc_s 为格子声速。 wαw_\alphacα\boldsymbol{c}_\alphacsc_s 的数值由选取的离散速度模型决定。

对于 LBM 而言,宏观量表示为

ρ=αfα=αfα(eq),ρu=αcαfα=αcαfα(eq)(3)\rho = \sum_{\alpha} f_{\alpha} = \sum_{\alpha} f_{\alpha}^{(eq)}, \quad \rho\boldsymbol{u} = \sum_{\alpha} \boldsymbol{c}_\alpha f_{\alpha} = \sum_{\alpha} \boldsymbol{c}_\alpha f_{\alpha}^{(eq)} \tag{3}

Chapman-Enskog 展开

Boltzmann 方程和 LBGK 方程都可以通过多尺度展开还原为 Navier-Stokes 方程。这里以 Chapman-Enskog 为例:

fα=fα(eq)+ϵfα(1)+ϵ2fα(2)+...,t=ϵt0+ϵ2t1,r=ϵr0f_{\alpha} = f_{\alpha}^{(eq)} + \epsilon f_{\alpha}^{(1)} + \epsilon^2 f_{\alpha}^{(2)} + ... , \quad \frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_0} + \epsilon^2 \frac{\partial}{\partial t_1}, \quad \frac{\partial}{\partial \boldsymbol{r}} = \epsilon \frac{\partial}{\partial \boldsymbol{r}_0}

上述展开保留至 ϵ1\epsilon^{1} ,即可还原为[5]

ρt+(αcαfα(eq))=0(4)\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\sum_{\alpha} \boldsymbol{c}_\alpha f_{\alpha}^{(eq)} \right) = 0 \tag{4}

ρut+Π=0(5)\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot \Pi = \boldsymbol{0} \tag{5}

式 (5) 中张量 Π\Pi 表示为

Πβγ=α(cα)β(cα)γ[fα(eq)+(112τ)ϵfα(1)]\Pi_{\beta \gamma} = \sum_{\alpha} (\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} \left[ f_{\alpha}^{(eq)} + \left(1 - \frac{1}{2 \tau}\right) \epsilon f_{\alpha}^{(1)} \right]

由于只保留到 ϵ1\epsilon^{1} ,所以 ϵfα(1)fαfα(eq)=fα(neq)\epsilon f_{\alpha}^{(1)} \approx f_{\alpha} - f_{\alpha}^{(eq)} = f_{\alpha}^{(neq)} 近似为非平衡态分布函数。此时

Πβγ=α(cα)β(cα)γ[fα(eq)+(112τ)fα(neq)](6)\Pi_{\beta \gamma} = \sum_{\alpha} (\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} \left[ f_{\alpha}^{(eq)} + \left(1 - \frac{1}{2 \tau}\right) f_{\alpha}^{(neq)} \right] \tag{6}

并且存在如下关系

fα(neq)ϵfα(1)=τ[t+cα]fα(eq)Δt(7)f_{\alpha}^{(neq)} \approx \epsilon f_{\alpha}^{(1)} = -\tau \left[ \frac{\partial}{\partial t} + \boldsymbol{c}_{\alpha} \cdot \nabla \right] f_{\alpha}^{(eq)} \Delta t \tag{7}

D=t+cα\mathrm{D} = \frac{\partial}{\partial t} + \boldsymbol{c}_{\alpha} \cdot \nabla ,则 fα(neq)τ(Δt)Dfα(eq)f_{\alpha}^{(neq)} \approx -\tau \cdot (\Delta t) \cdot \mathrm{D}f_{\alpha}^{(eq)}

流体运动粘度 ν\nu 和松弛时间 τ\tau 的关系为

ν=(τ12)cs2Δt\nu = \left( \tau - \frac{1}{2} \right) c_s^2 \Delta t

SHSLBM

式 (7) 说明:在保留至 ϵ1\epsilon^{1} 的情况下, fα(neq)f_{\alpha}^{(neq)}fα(eq)f_{\alpha}^{(eq)} 存在联系。考虑到式 (1) 中由 1τ\frac{-1}{\tau} 松弛的部分即为 fα(neq)f_{\alpha}^{(neq)} ,因此式 (1) 理应可以被写作完全由 fα(eq)f_{\alpha}^{(eq)} 进行表示的形式。这便是 SHSLBM 的核心思想。

基本算法

SHSLBM 的单个时间步迭代分为预报和校正两部分,具体写作:

  1. 预报步:计算 (r,t)(\boldsymbol{r},t) 的预估密度 ρ\rho^{*} 和预估速度 u\boldsymbol{u}^{*}

ρ=αfα(eq)(rcαΔt,tΔt),ρu=αcαfα(eq)(rcαΔt,tΔt)(8)\rho^{*} = \sum_{\alpha} f_{\alpha}^{(eq)} (\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t -\Delta t), \quad \rho^{*} \boldsymbol{u}^{*} = \sum_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(eq)} (\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t -\Delta t) \tag{8}

  1. 校正步:根据 ρ\rho^{*}u\boldsymbol{u}^{*} 得出校正值

{ρ=ρρu=ρu(11τ)αcα[fα(neq)(r+Δt2cα,tΔt2)fα(neq)(rΔt2cα,tΔt2)](9-1)\begin{cases} \rho = \rho^{*} \\ \rho \boldsymbol{u} = \rho^{*} \boldsymbol{u}^{*} - \left(1 - \frac{1}{\tau}\right) \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} [f_{\alpha}^{(neq)}(\boldsymbol{r}+\frac{\Delta t}{2}\boldsymbol{c}_{\alpha},t-\frac{\Delta t}{2}) - f_{\alpha}^{(neq)}(\boldsymbol{r}-\frac{\Delta t}{2}\boldsymbol{c}_{\alpha},t-\frac{\Delta t}{2})] \end{cases} \tag{9-1}

式 (9-1) 中非平衡态的计算通过对式 (7) 的差分实现,即:

fα(neq)(rΔt2cα,tΔt2)=τ[fα(eq)(r,t)fα(eq)(rcαΔt,tΔt)]+O((Δt)3)f_{\alpha}^{(neq)}(\boldsymbol{r} - \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) = -\tau \left[ f_{\alpha}^{(eq)}(\boldsymbol{r}, t) - f_{\alpha}^{(eq)}(\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t - \Delta t) \right] + O((\Delta t)^3)

同理:

fα(neq)(r+Δt2cα,tΔt2)=τ[fα(eq)(r+cαΔt,t)fα(eq)(r,tΔt)]+O((Δt)3)f_{\alpha}^{(neq)}(\boldsymbol{r} + \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) = -\tau \left[ f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) - f_{\alpha}^{(eq)}(\boldsymbol{r}, t - \Delta t) \right] + O((\Delta t)^3)

在这两条式子中, fα(eq)(r,t)f_{\alpha}^{(eq)}(\boldsymbol{r}, t)fα(eq)(r+cαΔt,t)f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) 都是未知的。参照Shu等[6]的做法,对上面两条公式中的这两个量使用预报步数据进行近似,即

fα(eq)(r,t)=fα(eq)(ρ(r,t),u(r,t))f_{\alpha}^{(eq)}(\boldsymbol{r}, t) = f_{\alpha}^{(eq)}(\rho^{*}(\boldsymbol{r}, t), \boldsymbol{u}^{*}(\boldsymbol{r}, t))

式 (9-1) 中 ρu\rho \boldsymbol{u} 的计算还可以进一步化简。注意到,对于 fα(neq)(rΔt2cα,tΔt2)f_{\alpha}^{(neq)}(\boldsymbol{r} - \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) ,有

αcαfα(neq)(rΔt2cα,tΔt2)=τ[αcαfα(eq)(r,t)αcαfα(eq)(rcαΔt,tΔt)]+O((Δt)3)=τ(ρuρu)+O((Δt)3)=O((Δt)3)\begin{aligned} \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(neq)}(\boldsymbol{r} - \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) &= -\tau \left[ \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) \right.\\ &\quad\left. -\sum\limits_{\alpha} \boldsymbol{c}_{\alpha}f_{\alpha}^{(eq)}(\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t - \Delta t)\right] + O((\Delta t)^3) \\ &= -\tau (\rho^{*} \boldsymbol{u}^{*} - \rho^{*} \boldsymbol{u}^{*}) + O((\Delta t)^3) \\ &= O((\Delta t)^3) \end{aligned}

所以式 (9-1) 可进一步化简为式 (9-2)

{ρ=ρρu=ρu(11τ)αcαfα(neq)(r+Δt2cα,tΔt2)(9-2)\begin{cases} \rho = \rho^{*} \\ \rho \boldsymbol{u} = \rho^{*} \boldsymbol{u}^{*} - \left(1 - \frac{1}{\tau}\right) \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(neq)}(\boldsymbol{r}+\frac{\Delta t}{2}\boldsymbol{c}_{\alpha},t-\frac{\Delta t}{2}) \end{cases} \tag{9-2}

对应的宏观流程

事实上,式 (8) 和式 (9-1), (9-2) 的预报和校正存在着对应的宏观偏微分方程。下面简要说明一下。

预报步

式 (8) 对应的宏观方程为

{ρt+(αcαfα(eq))=0ρut+[α(cα)β(cα)γfα(eq)+12τα(cα)β(cα)γfα(neq)]=0(10)\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\sum\limits_{\alpha} \boldsymbol{c}_\alpha f_{\alpha}^{(eq)} \right) = 0 \\ \frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot \left[ \sum\limits_{\alpha}(\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} f_{\alpha}^{(eq)} + \frac{1}{2 \tau} \sum\limits_{\alpha}(\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} f_{\alpha}^{(neq)} \right] = \boldsymbol{0} \end{cases} \tag{10}

首先,对 fα(eq)(rcαΔt,tΔt)f_{\alpha}^{(eq)} (\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t -\Delta t)(r,t)(\boldsymbol{r},t) 进行展开,并代入式 (7) ,得到:

fα(eq)(rcαΔt,tΔt)=fα(eq)(r,t)(Δt)Dfα(eq)(r,t)+(Δt)22D2fα(eq)(r,t)+O((Δt)3)=fα(eq)(r,t)(Δt)Dfα(eq)(r,t)Δt2τDfα(neq)(r,t)+O((Δt)3)(11)\begin{aligned} f_{\alpha}^{(eq)} (\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t, t -\Delta t) &= f_{\alpha}^{(eq)} (\boldsymbol{r}, t) - (\Delta t) \mathrm{D} f_{\alpha}^{(eq)} (\boldsymbol{r}, t) \\ &\quad+ \frac{(\Delta t)^2}{2} \mathrm{D}^{2} f_{\alpha}^{(eq)} (\boldsymbol{r}, t) + O((\Delta t)^3) \\ &= f_{\alpha}^{(eq)} (\boldsymbol{r}, t) - (\Delta t) \mathrm{D} f_{\alpha}^{(eq)} (\boldsymbol{r}, t) \\ &\quad - \frac{\Delta t}{2 \tau} \mathrm{D} f_{\alpha}^{(neq)} (\boldsymbol{r}, t) + O((\Delta t)^3) \\ \end{aligned} \tag{11}

将式 (11) 代入式 (8) 的第一条公式,有:

ρ=αfα(eq)(r,t)(Δt)αDfα(eq)(r,t)Δt2ταDfα(neq)(r,t)+O((Δt)3)(12)\begin{aligned} \rho^{*} &= \sum_{\alpha}f_{\alpha}^{(eq)}(\boldsymbol{r}, t) - (\Delta t) \sum_{\alpha} \mathrm{D} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) \\ &\quad - \frac{\Delta t}{2 \tau} \sum_{\alpha} \mathrm{D} f_{\alpha}^{(neq)}(\boldsymbol{r}, t) + O((\Delta t)^3) \end{aligned} \tag{12}

式 (12) 右侧第一项与 ρ\rho^{*} 相等,右侧第三项根据非平衡态的守恒律可知其为 0 。所以在消去式 (12) 中的 Δt\Delta t 后, ρ\rho^{*} 的计算与式 (10) 中第一条公式对应,并具有 O((Δt)2)O((\Delta t)^2) 精度。

将式 (11) 代入式 (8) 的第二条公式,整理得:

ρu=αcαfα(eq)(r,t)(Δt)αcαDfα(eq)(r,t)Δt2ταcαDfα(neq)(r,t)+O((Δt)3)=αcαfα(eq)(r,t)(Δt)[tαcαfα(eq)(r,t)+α(cα)β(cα)γ(fα(eq)(r,t)+12τfα(neq)(r,t))]Δt2ταtcαfα(neq)(r,t)+O((Δt)3)(13)\begin{aligned} \rho^{*} \boldsymbol{u}^{*} &= \sum_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) - (\Delta t) \sum_{\alpha} \boldsymbol{c}_{\alpha} \mathrm{D} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) \\ &\quad - \frac{\Delta t}{2 \tau} \sum_{\alpha} \boldsymbol{c}_{\alpha} \mathrm{D} f_{\alpha}^{(neq)}(\boldsymbol{r}, t) + O((\Delta t)^3) \\ &= \sum_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) - (\Delta t) \left[ \frac{\partial}{\partial t} \sum_{\alpha} \boldsymbol{c}_{\alpha} f_{\alpha}^{(eq)}(\boldsymbol{r}, t) + \right. \\ &\quad \left. \nabla \cdot \sum_{\alpha} (\boldsymbol{c}_{\alpha})_\beta (\boldsymbol{c}_{\alpha})_\gamma \left( f_{\alpha}^{(eq)}(\boldsymbol{r}, t) + \frac{1}{2 \tau} f_{\alpha}^{(neq)}(\boldsymbol{r}, t) \right) \right] \\ &\quad - \frac{\Delta t}{2 \tau} \sum_{\alpha} \frac{\partial}{\partial t} \boldsymbol{c}_{\alpha} f_{\alpha}^{(neq)}(\boldsymbol{r}, t) + O((\Delta t)^3) \end{aligned} \tag{13}

式 (13) 右侧第一项与 ρu\rho^{*} \boldsymbol{u}^{*} 相等,右侧 αtcαfα(neq)(r,t)\sum\limits_{\alpha} \frac{\partial}{\partial t} \boldsymbol{c}_{\alpha} f_{\alpha}^{(neq)}(\boldsymbol{r}, t) 项根据非平衡态的守恒律可知其为 0 。所以在消去式 (13) 中的 Δt\Delta t 后, ρu\rho^{*} \boldsymbol{u}^{*} 的计算与式 (10) 中第二条公式对应,并具有 O((Δt)2)O((\Delta t)^2) 精度。

校正步

式 (9) 对应的宏观方程为

{ρt=0ρut+[(112τ)α(cα)β(cα)γfα(neq)]=0(14)\begin{cases} \frac{\partial \rho}{\partial t} = 0 \\ \frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot \left[ \left( 1 - \frac{1}{2 \tau} \right) \sum\limits_{\alpha}(\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} f_{\alpha}^{(neq)} \right] = \boldsymbol{0} \end{cases} \tag{14}

这里主要介绍一下动量方程的还原。对 fα(neq)(r±Δt2cα,tΔt2)f_{\alpha}^{(neq)}(\boldsymbol{r} \pm \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) 进行 Taylor 展开,得到

fα(neq)(r±Δt2cα,tΔt2)=fα(neq)(r,tΔt2)±Δt2(cα)fα(neq)(r,tΔt2)+(Δt)28(cα)2fα(neq)(r,tΔt2)+O((Δt)3)\begin{aligned} f_{\alpha}^{(neq)}(\boldsymbol{r} \pm \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) &= f_{\alpha}^{(neq)}(\boldsymbol{r}, t - \frac{\Delta t}{2}) \\ &\quad \pm \frac{\Delta t}{2} (\boldsymbol{c}_{\alpha} \cdot \nabla) f_{\alpha}^{(neq)}(\boldsymbol{r}, t - \frac{\Delta t}{2}) \\ &\quad + \frac{(\Delta t)^2}{8} (\boldsymbol{c}_{\alpha} \cdot \nabla)^2 f_{\alpha}^{(neq)}(\boldsymbol{r}, t - \frac{\Delta t}{2}) + O((\Delta t)^3) \end{aligned}

这里我们以未化简的式 (9-1) 为例。在式 (9-1) 的动量校正步中,有:

(11τ)1Δtαcα[fα(neq)(r+Δt2cα,tΔt2)fα(neq)(rΔt2cα,tΔt2)]=(11τ)αcα(cα)fα(neq)(r,tΔt2)+O((Δt)2)=[(11τ)α(cα)β(cα)γfα(neq)(r,tΔt2)]+O((Δt)2)\begin{aligned} &\quad \left(1 - \frac{1}{\tau}\right) \frac{1}{\Delta t} \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} [f_{\alpha}^{(neq)}(\boldsymbol{r}+\frac{\Delta t}{2}\boldsymbol{c}_{\alpha},t-\frac{\Delta t}{2}) - f_{\alpha}^{(neq)}(\boldsymbol{r}-\frac{\Delta t}{2}\boldsymbol{c}_{\alpha},t-\frac{\Delta t}{2})] \\ &= \left(1 - \frac{1}{\tau}\right) \sum\limits_{\alpha} \boldsymbol{c}_{\alpha} (\boldsymbol{c}_{\alpha} \cdot \nabla) f_{\alpha}^{(neq)}(\boldsymbol{r}, t - \frac{\Delta t}{2}) + O((\Delta t)^2) \\ &= \nabla \cdot \left[ \left(1 - \frac{1}{\tau}\right) \sum\limits_{\alpha}(\boldsymbol{c}_\alpha)_{\beta} (\boldsymbol{c}_\alpha)_{\gamma} f_{\alpha}^{(neq)}(\boldsymbol{r}, t - \frac{\Delta t}{2}) \right] + O((\Delta t)^2) \\ \end{aligned}

此时联立式 (13) ,即可还原式 (14) 中的动量方程。

SHSLBM 的稳定性分析

这里令 Y=(y1,y2,y3,y4)T\mathbf{Y} = (y_1, y_2, y_3, y_4)^T。其中

y1=ρ,y2=ρux,y3=ρuy,y4=ρuzy_1 = \rho,\quad y_2 = \rho u_x ,\quad y_3 = \rho u_y ,\quad y_4 = \rho u_z

将这些符号代换到式 (2) 的 fα(eq)f_{\alpha}^{(eq)} 中,得:

fα(eq)=y1αwα+wαcs2(cαxy2α+cαyy3α+cαzy4α)+wα2y1αcs4(cαxy2α+cαyy3α+cαzy4α)2wα2y1αcs2(y2α2+y3α2+y4α2)(15)\begin{aligned} f_{\alpha}^{(eq)} &= y_{1 \alpha} w_{\alpha} + \frac{w_\alpha}{c_s^2} ( c_{\alpha x} y_{2 \alpha}+ c_{\alpha y} y_{3 \alpha} + c_{\alpha z} y_{4 \alpha} ) \\ &\quad + \frac{w_\alpha}{2 y_{1 \alpha} c_s^4} ( c_{\alpha x} y_{2 \alpha}+ c_{\alpha y} y_{3 \alpha} + c_{\alpha z} y_{4 \alpha} )^2 \\ &\quad - \frac{w_\alpha}{2 y_{1 \alpha} c_s^2} (y_{2 \alpha}^2 + y_{3 \alpha}^2 + y_{4 \alpha}^2) \end{aligned} \tag{15}

where the subscript α\alpha denotes the quantities at a space level of (rcαΔt)(\boldsymbol{r} - \boldsymbol{c}_{\alpha} \Delta t).[2:1]

预报步

对于第 nn 步的结果 Yn\mathbf{Y}^{n},式 (8) 的预报步写作 Y=G(Yn)\mathbf{Y}^{*} = \mathbf{G}(\mathbf{Y}^{n})

为便于进行诺依曼稳定性分析,对上式进行求导,有

dY=[Yy1]ndy1n+[Yy2]ndy2n+[Yy3]ndy3n+[Yy4]ndy4n\mathrm{d \mathbf{Y}^{*}} = \left[ \frac{\partial \mathbf{Y}^{*}}{\partial y_1} \right]^n \mathrm{d}y_1^n + \left[ \frac{\partial \mathbf{Y}^{*}}{\partial y_2} \right]^n \mathrm{d}y_2^n + \left[ \frac{\partial \mathbf{Y}^{*}}{\partial y_3} \right]^n \mathrm{d}y_3^n + \left[ \frac{\partial \mathbf{Y}^{*}}{\partial y_4} \right]^n \mathrm{d}y_4^n

上标 nn 代表第 nn 个时间步。由于 dY=(dy1,dy2,dy3,dy4)T\mathrm{d \mathbf{Y}^{*}} = (\mathrm{d} y_1^{*}, \mathrm{d} y_2^{*}, \mathrm{d} y_3^{*}, \mathrm{d} y_4^{*})^T ,所以,对于预报步结果的每个分量而言有: dyλ=κ=14[yλyκ]ndyκn\mathrm{d} y_{\lambda}^{*} = \sum_{\kappa = 1}^{4}\left[ \frac{\partial y_{\lambda}^{*}}{\partial y_{\kappa}} \right]^n \mathrm{d}y_{\kappa}^nλ,κ[1,2,3,4]\lambda, \kappa \in [1,2,3,4])。

对于本文列出的方程组, [yλyκ]n\left[ \frac{\partial y_{\lambda}^{*}}{\partial y_{\kappa}} \right]^n 多达 16 个。因此下文仅拿 [y1y1]n\left[ \frac{\partial y_{1}^{*}}{\partial y_{1}} \right]^n 举例进行计算。

[y1y1]n=y1αfα(eq)=α[wαwα2(y1αn)2cs4(cαxy2αn+cαyy3αn+cαzy4αn)2+wα2(y1αn)2cs2((y2αn)2+(y3αn)2+(y4αn)2)](16)\begin{aligned} \left[ \frac{\partial y_{1}^{*}}{\partial y_{1}} \right]^n &= \frac{\partial}{\partial y_{1}} \sum_{\alpha} f_{\alpha}^{(eq)} \\ &= \sum_{\alpha} \left[ w_{\alpha} - \frac{w_\alpha}{2 (y_{1\alpha}^n)^2 c_s^4} ( c_{\alpha x} y_{2 \alpha}^n + c_{\alpha y} y_{3 \alpha}^n + c_{\alpha z} y_{4 \alpha}^n )^2 \right. \\ &\quad\left. + \frac{w_\alpha}{2 (y_{1\alpha}^n)^2 c_s^2} ((y_{2 \alpha}^n)^2 + (y_{3 \alpha}^n)^2 + (y_{4 \alpha}^n)^2) \right] \end{aligned} \tag{16}

假设式 (16) 中的 dyi\mathrm{d} y^{*}_{i}, dyin\mathrm{d} y^{n}_{i}, yiαny^{n}_{i \alpha} 均可被展开为如下形式(i=[1,2,3,4]i = [1,2,3,4]j=1j=\sqrt{-1}

dyi=dyiexp(jkr),dyin=dyinexp(jkr),yiαn=yinexp(jkr)\mathrm{d} y^{*}_{i} = \overline{\mathrm{d} y_{i}}^{*} \exp(j \boldsymbol{k \cdot r}) ,\quad \mathrm{d} y^{n}_{i} = \overline{\mathrm{d} y_{i}}^{n} \exp(j \boldsymbol{k \cdot r}) ,\quad y^{n}_{i \alpha} = y_{i}^{n} \exp(j \boldsymbol{k \cdot r})

代入到式 (16) 和 dY\mathrm{d \mathbf{Y}^{*}} 表达式,得

[y1y1]n=y1αfα(eq)=α[wαwα2(y1n)2cs4(cαxy2n+cαyy3n+cαzy4n)2+wα2(y1n)2cs2((y2n)2+(y3n)2+(y4n)2)](17)\begin{aligned} \left[ \frac{\partial y_{1}^{*}}{\partial y_{1}} \right]^n &= \frac{\partial}{\partial y_{1}} \sum_{\alpha} f_{\alpha}^{(eq)} \\ &= \sum_{\alpha} \left[ w_{\alpha} - \frac{w_\alpha}{2 (y_{1}^n)^2 c_s^4} ( c_{\alpha x} y_{2}^n + c_{\alpha y} y_{3}^n + c_{\alpha z} y_{4}^n )^2 \right. \\ &\quad\left. + \frac{w_\alpha}{2 (y_{1}^n)^2 c_s^2} ((y_{2}^n)^2 + (y_{3}^n)^2 + (y_{4}^n)^2) \right] \end{aligned} \tag{17}

格子张量的一些性质[2:2]

αwα=1.α[0,1,...,q1]αwαcαβ=0.β[x,y,z]αwαcαβcαγ=cs2δβγ.β,γ[x,y,z]\begin{aligned} & \sum_{\alpha} w_{\alpha} = 1 .&\qquad \alpha \in [0,1, ..., q-1]\\ & \sum_{\alpha} w_{\alpha} c_{\alpha \beta} = 0 .&\qquad \beta \in [x,y,z] \\ & \sum_{\alpha} w_{\alpha} c_{\alpha \beta} c_{\alpha \gamma} = c_s^2 \delta_{\beta \gamma} .&\qquad \beta, \gamma \in [x,y,z] \end{aligned}

注: qq 为离散速度数目

基于格子张量的性质,式 (17) 右侧仅剩下 αwα\sum\limits_{\alpha} w_{\alpha} ,即:

[y1y1]n=1\left[ \frac{\partial y_{1}^{*}}{\partial y_{1}} \right]^n = 1

同理,其他项也可进行类似分析,并得出

[yλyκ]n=δλκ\left[ \frac{\partial y_{\lambda}^{*}}{\partial y_{\kappa}} \right]^n = \delta_{\lambda \kappa}

其中 δλκ\delta_{\lambda \kappa} 为狄拉克函数,且 λ,κ[1,2,3,4]\lambda,\kappa \in [1,2,3,4] 。所以我们可以得到 dY=dYn\overline{\mathrm{d} \mathbf{Y}}^{*} = \overline{\mathrm{d} \mathbf{Y}}^{n}

校正步

dyin+1=dyin+1exp(jkr){\mathrm{d} y_i}^{n+1} = \overline{\mathrm{d} y_i}^{n+1} \exp(j \boldsymbol{k \cdot r})i[1,2,3,4]i \in [1,2,3,4])。由于校正步(式 (9-2) )中并未对 ρ\rho 做修改,易得:

dy1n+1=dy1=dy1n\overline{\mathrm{d} y_1}^{n+1} = \overline{\mathrm{d} y_1}^{*} = \overline{\mathrm{d} y_1}^{n}

根据式 (9-2) 的校正步,以及 fα(neq)(r+Δt2cα,tΔt2)f_{\alpha}^{(neq)}(\boldsymbol{r} + \frac{\Delta t}{2} \boldsymbol{c}_{\alpha}, t - \frac{\Delta t}{2}) 的差分表示,有

y2n+1=y2(τ1)y2n+(τ1)αcαxfα(eq)(r+cαΔt,t)y3n+1=y3(τ1)y3n+(τ1)αcαyfα(eq)(r+cαΔt,t)y4n+1=y4(τ1)y4n+(τ1)αcαzfα(eq)(r+cαΔt,t)(18)\begin{aligned} y_2^{n+1} = y_2^{*} - (\tau - 1) y_2^{n} + (\tau - 1) \sum\limits_{\alpha} c_{\alpha x} f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) \\ y_3^{n+1} = y_3^{*} - (\tau - 1) y_3^{n} + (\tau - 1) \sum\limits_{\alpha} c_{\alpha y} f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) \\ y_4^{n+1} = y_4^{*} - (\tau - 1) y_4^{n} + (\tau - 1) \sum\limits_{\alpha} c_{\alpha z} f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) \end{aligned} \tag{18}

这里同样以 y2n+1y_2^{n+1} 的计算为例,记

S=αcαxfα(eq)(r+cαΔt,t)=αcαxwαy1(α)+αcαxwαcs2(cαxy2(α)+cαyy3(α)+cαzy4(α))+αcαxwα2cs4y1(α)(cαxy2(α)+cαyy3(α)+cαzy4(α))2αcαxwα2cs2y1(α)((y2(α))2+(y3(α))2+(y4(α))2)2\begin{aligned} S &= \sum\limits_{\alpha} c_{\alpha x} f_{\alpha}^{(eq)}(\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t, t) \\ &= \sum\limits_{\alpha} c_{\alpha x} w_{\alpha} y_{1(-\alpha)}^{*} \\ &\quad + \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{c_s^2} (c_{\alpha x} y_{2(-\alpha)}^{*} + c_{\alpha y} y_{3(-\alpha)}^{*} + c_{\alpha z} y_{4(-\alpha)}^{*}) \\ &\quad + \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^4 y_{1(-\alpha)}^{*}} (c_{\alpha x} y_{2(-\alpha)}^{*} + c_{\alpha y} y_{3(-\alpha)}^{*} + c_{\alpha z} y_{4(-\alpha)}^{*})^2 \\ &\quad - \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^2 y_{1(-\alpha)}^{*}} ( (y_{2(-\alpha)}^{*})^2 + (y_{3(-\alpha)}^{*})^2 + (y_{4(-\alpha)}^{*})^2 )^2 \\ \end{aligned}

其中下标 (α)(-\alpha) 代表来自 r+cαΔt\boldsymbol{r} + \boldsymbol{c}_{\alpha} \Delta t 的值。则

y2n+1=y2+(τ1)(Sy2n)(19)y_2^{n+1} = y_2^{*} + (\tau - 1) (S - y_2^{n}) \tag{19}

所以其差分表示为

dy2n+1=dy2+(τ1)(dSdy2n)(20)\mathrm{d} y_2^{n+1} = \mathrm{d} y_2^{*} + (\tau - 1) (\mathrm{d} S - \mathrm{d} y_2^{n}) \tag{20}

对于 dS\mathrm{d} S,有

dS=(Sy1)dy1+(Sy2)dy2+(Sy3)dy3+(Sy4)dy4\mathrm{d} S = \left( \frac{\partial S}{\partial y_1} \right)^{*} \mathrm{d}y_1^{*} + \left( \frac{\partial S}{\partial y_2} \right)^{*} \mathrm{d}y_2^{*} + \left( \frac{\partial S}{\partial y_3} \right)^{*} \mathrm{d}y_3^{*} + \left( \frac{\partial S}{\partial y_4} \right)^{*} \mathrm{d}y_4^{*}

(Sy1)\left( \frac{\partial S}{\partial y_1} \right)^{*} 为例,有

(Sy1)=αcαxwααcαxwα2cs4(y1(α))2(cαxy2(α)+cαyy3(α)+cαzy4(α))2+αcαxwα2cs2(y1(α))2((y2(α))2+(y3(α))2+(y4(α))2)2\begin{aligned} \left( \frac{\partial S}{\partial y_1} \right)^{*} &= \sum\limits_{\alpha} c_{\alpha x} w_{\alpha} \\ &\quad - \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^4 (y_{1(-\alpha)}^{*})^2} (c_{\alpha x} y_{2(-\alpha)}^{*} + c_{\alpha y} y_{3(-\alpha)}^{*} + c_{\alpha z} y_{4(-\alpha)}^{*})^2 \\ &\quad + \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^2 (y_{1(-\alpha)}^{*})^2} ( (y_{2(-\alpha)}^{*})^2 + (y_{3(-\alpha)}^{*})^2 + (y_{4(-\alpha)}^{*})^2 )^2 \end{aligned}

与预报步的做法类似,将 yi(α)y_{i(-\alpha)}^{*} 近似为 yiy_{i}^{*},得到:

(Sy1)=αcαxwααcαxwα2cs4(y1)2(cαxy2+cαyy3+cαzy4)2+αcαxwα2cs2(y1)2((y2)2+(y3)2+(y4)2)2\begin{aligned} \left( \frac{\partial S}{\partial y_1} \right)^{*} &= \sum\limits_{\alpha} c_{\alpha x} w_{\alpha} \\ &\quad - \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^4 (y_{1}^{*})^2} (c_{\alpha x} y_{2}^{*} + c_{\alpha y} y_{3}^{*} + c_{\alpha z} y_{4}^{*})^2 \\ &\quad + \sum\limits_{\alpha} \frac{c_{\alpha x} w_{\alpha}}{2 c_s^2 (y_{1}^{*})^2} ( (y_{2}^{*})^2 + (y_{3}^{*})^2 + (y_{4}^{*})^2 )^2 \end{aligned}

此时所有 yiy_{i}^{*} 均可被视为常数提取出来。根据格子张量的性质,可得: (Sy1)=0\left( \frac{\partial S}{\partial y_1} \right)^{*} = 0

同理

(Sy2)=1,(Sy3)=(Sy4)=0\left( \frac{\partial S}{\partial y_2} \right)^{*} = 1,\quad \left( \frac{\partial S}{\partial y_3} \right)^{*} = \left( \frac{\partial S}{\partial y_4} \right)^{*} = 0

此时 dS=dy2\overline{\mathrm{d} S } = \overline{\mathrm{d} y_2}^{*} ,则式 (20) 可化简为:

dy2n+1=dy2=dy2n\overline{\mathrm{d} y_2}^{n+1} = \overline{\mathrm{d} y_2}^{*} = \overline{\mathrm{d} y_2}^{n}

同理,对 y3n+1y_3^{n+1}y4n+1y_4^{n+1} 计算可得: dy3n+1=dy3n\overline{\mathrm{d} y_3}^{n+1} = \overline{\mathrm{d} y_3}^{n}dy4n+1=dy4n\overline{\mathrm{d} y_4}^{n+1} = \overline{\mathrm{d} y_4}^{n}

dYn=(dy1n,dy2n,dy3n,dy4n)T\mathrm{d \mathbf{Y}^{n}} = (\mathrm{d} y_1^{n}, \mathrm{d} y_2^{n}, \mathrm{d} y_3^{n}, \mathrm{d} y_4^{n})^TdYn+1=(dy1n+1,dy2n+1,dy3n+1,dy4n+1)T\mathrm{d \mathbf{Y}^{n+1}} = (\mathrm{d} y_1^{n+1}, \mathrm{d} y_2^{n+1}, \mathrm{d} y_3^{n+1}, \mathrm{d} y_4^{n+1})^T ,那么:

dYn+1=IdYn\overline{\mathrm{d \mathbf{Y}}}^{n+1} = \mathbf{I} \, \overline{\mathrm{d \mathbf{Y}}}^{n}

其中 I\mathbf{I} 为单位矩阵。显然,特征矩阵的特征值全是 1 ,代表着该格式无条件稳定。


  1. Chen, Z., Shu, C., Wang, Y., Yang, L. M., & Tan, D. (2017). A Simplified Lattice Boltzmann Method without Evolution of Distribution Function. Advances in Applied Mathematics and Mechanics, 9(1), 1–22. DOI:10.4208/aamm.OA-2016-0029 ↩︎

  2. Z. Chen, C. Shu, D. Tan; Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids. 1 May 2017; 29 (5): 053601. DOI:10.1063/1.4983339 ↩︎ ↩︎ ↩︎

  3. Chen Z, Shu C, Tan D, Wu C. On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis. Int J Numer Meth Fluids. 2018; 87: 161–179. DOI:10.1002/fld.4485 ↩︎

  4. Chen, Z., & Shu, C. (2020). Simplified and Highly Stable Lattice Boltzmann Method. WORLD SCIENTIFIC. DOI:10.1142/12047 ↩︎

  5. 本文中所有 \nabla 均表示空间偏导 r\frac{\partial}{\partial \boldsymbol{r}}↩︎

  6. C. Shu, Y. Wang, C. Teo, and J. Wu. Development of lattice Boltzmann flux solver for simulation of incompressible flows. Advances In Applied Mathematics And Mechanics. 6, 436 (2014). ↩︎

这是我之前的一次期末大报告作业,里面的内容也算是从其他文章里搬运的,在此重新誊抄出来。内容如有错误,欢迎各位指正。

[注] 1. 下文提到的 xxuuξ\xi 无论有没有加粗均为向量。
2. 本文已经同步发表在本人的知乎CSDN上,可在其他网站获得同样的阅读效果。

一、 单松弛格子Boltzmann方程

1.1 Boltzmann方程

格子Boltzmann方法基于Boltzmann方程(即(1)式),该方程引入速度分布函数,描述了非热力学平衡状态的热力学系统统计行为:

ft+ξfx+Fmfξ=Ω(f)(1)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \boldsymbol{x}} + \frac{F}{m} \cdot \frac{\partial f}{\partial \mathbf{\xi}}=\Omega(f) \tag{1}

(1)式中 Ω(f)\Omega(f) 为碰撞项, ξ=xt\mathbf{\xi}=\frac{\partial x}{\partial t} 。速度分布函数的定义是:在时刻tt,以xx为中心的空间微元 dx\mathrm{d}\mathit{x} 内,速度在 ξ\xi(ξ+dξ)(\xi+\mathrm{d}\it{\xi}) 之间的分子的数量为 fdxdξf \mathrm{d}\it{x} \mathrm{d}\it{\xi} 。记分子质量为 mm ,流体宏观速度为uu,单位体积内能为ee,分子数密度为nn,则:

ρ=mn=mfdξ\rho = mn = m \int{f} \mathrm{d}\xi

ρu=mξfdξ\rho u = m \int{\xi f} \mathrm{d}\xi

ρE=ρe+12ρu2=mfξ22dξ\rho E = \rho e + \frac{1}{2} \rho u^2 = m \int{ f \frac{\xi^2}{2} } \mathrm{d} \xi

碰撞项 描述了分子碰撞对整个系统运动产生的影响,它具有两个特点:①满足质量、动量和能量守恒;②能够反映系统趋于平衡态的趋势。Bhatnagur、Gross和Krook三人在此基础上提出了最为简单且著名的BGK模型,即(2)式。

Ω(f)=1τc(ff(eq))(2)\Omega(f) = -\frac{1}{\tau_c} \left ( f - f^{(eq)} \right ) \tag{2}

其中τc\tau_c为松弛时间, f(eq)f^{(eq)} 为平衡态分布函数。 可根据Boltzmann H定理计算得:

f(eq)=n(2πRT)3/2exp((ξu)22RT)(3)f^{(eq)} = \frac{n}{(2 \pi RT)^{3/2}} \mathrm{exp}\left( -\frac{(\mathbf{\xi-u})^2}{2RT} \right) \tag{3}

1.2 格子Boltzmann方程

为了将Boltzmann方程应用于实际的数值模拟,需要将流体视为大量的离散粒子。离散粒子于流体分子不同,它们驻留在网格上,并按一定的规则在网格上发生碰撞和迁移。因此,1.2节将 mfmf 记为 ff,此时 ff 为密度分布函数。对密度分布函数 ff ,不考虑 FF 的Boltzmann-BGK方程为式。

ft+ξfx=1τc[ff(eq)](4)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = - \frac{1}{\tau_c} \left[ f - f^{(eq)} \right] \tag{4}

其宏观量按如下方式确定

ρ=fdξρu=ξfdξρE=fξ22dξ\rho = \int { f } \mathrm{d} \xi ,\rho u = \int { \xi f } \mathrm{d} \xi ,\rho E = \int { f \frac{\xi^2}{2} } \mathrm{d} \xi

ff 和其对应的 f(eq)f^{(eq)} 可进行如下离散:fi=wiff_i = w_i ffi(eq)=wif(eq)f_i^{(eq)} = w_i f^{(eq)}。其中下标 ii 表示特征方向 ci\boldsymbol{c}_ifif_ifi(eq)f_i^{(eq)}均沿着ci\boldsymbol{c}_i方向运动。据此,沿着特征方向离散(4)式得到的差分格式为

fi(x+ξiΔt,t+Δt)fi(x,t)=1τ[fi(x,t)fi(eq)(x,t)](5)f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right] \tag{5}

其中 τ=τcΔt\tau = \frac{\tau_c}{\Delta t} 为无量纲松弛时间。由于对应的 f(eq)f^{(eq)} 为:

f(eq)=ρexp((ξu)22RT)(6-1)f^{(eq)} = \rho \cdot \mathrm{exp} ( - \frac{(\xi - \it{u})^2}{2\it{RT}} ) \tag{6-1}

所以将 f(eq)f^{(eq)} 展开至2阶并离散,可得:

fi(eq)=wiρ[1+ξiucs2+(ξiu)22cs4uu2cs2](6-2)f^{(eq)}_i = w_i \rho \left[ 1 + \frac{\xi_i \cdot u}{c_s^2} + \frac{(\xi_i \cdot u)^2}{2 c_s^4} - \frac{u \cdot u}{2 c_s^2} \right] \tag{6-2}

其中 cs=RTc_s = \sqrt{RT} 在LBM模拟中一般被称作格子声速。

二、Chapman-Enskog展开分析

将基本碰撞不变量 φi=1,ξ,ξ22φ_i=1,ξ,\frac{ξ^2}{2} 乘以(1)式两端,并对 ξ\xi 积分有:

ρt+(ρu)=0(7-1)\frac{∂ρ}{\partial t}+∇⋅(ρ \mathbf{u})=0 \tag{7-1}

(ρu)t+(ρuu+P)=ρa(7-2)\frac{∂(ρu)}{\partial t}+∇⋅(ρ \mathbf{uu}+P) = ρ \mathit{\bf{a}} \tag{7-2}

(ρE)t+(ρuE+Pu+Q)=ρau(7-3)\frac{∂(\rho E)}{\partial t} + ∇⋅(\rho \mathbf{u}E + P⋅\mathbf{u} + \mathbf{Q})=\rho \mathbf{a⋅u} \tag{7-3}

Chapman-Enskog展开(下文简称C-E展开)是处理Boltzmann方程的一种分析方法,该方法引入小量ε\varepsilon作为展开因子(一般与Knudsen数同阶),将BGK方程在不同的尺度上展开,即:

f=n=0εnf(n)(8)f = \sum_{n=0}^{\infty} \varepsilon^n f^{(n)} \tag{8}

并将分布函数、导数、物理量等都按照ε\varepsilon的不同阶次展开。该方法对 f(n)f^{(n)} 进行了限制,使其满足:f(n)φidξ=0\int f^{(n)} φ_i \mathrm{d}ξ=0φi(i=1,..,5)φ_i (i=1,..,5) 为基本碰撞不变量。将 ff 视为 ρ\rhou\mathbf{u}TT 及其各阶导数的泛函,而时间偏导项则展开为

t=n=0nt(9)\frac{\partial }{\partial t} = \sum_{n=0}^{\infty } \frac{\partial _n}{\partial t} \tag{9}

将(8)式和(9)式代入到(7)式中。得 O(ε0)O({\varepsilon}^0) 方程组为:

0ρt+(ρu)=0(10-1)\frac{∂_0 ρ}{\partial t}+∇⋅(ρ \mathbf{u})=0 \tag{10-1}

0(ρu)t+(ρuu+P(0))=ρa(10-2)\frac{∂_0 (ρu)}{\partial t}+∇⋅(ρ \mathbf{uu}+P^{(0)}) = ρ \mathbf{a} \tag{10-2}

0(ρE)t+(ρuE+P(0)u+Q(0))=ρau(10-3)\frac{∂_0(\rho E)}{\partial t} + ∇⋅(\rho \mathbf{u}E + P^{(0)} ⋅ \mathbf{u} + \mathbf{Q}^{(0)})=\rho \mathbf{a⋅u} \tag{10-3}

以及 O(εn)O({\varepsilon}^n) 方程组为 (n>0)(n>0)

nρt=0(11-1)\frac{∂_n ρ}{\partial t}=0 \tag{11-1}

n(ρu)t+P(n)=0(11-2)\frac{∂_n (ρu)}{\partial t}+∇ ⋅ P^{(n)} = 0 \tag{11-2}

n(ρE)t+(P(n)u+Q(n))=0(11-3)\frac{∂_n (\rho E)}{\partial t} + ∇⋅( P^{(n)} ⋅ \mathbf{u} + \mathbf{Q}^{(n)} ) = 0 \tag{11-3}

其中

C=ξu,P(n)=mCCf(n)dξ,Q(n)=mCC22f(n)dξC=\boldsymbol{ξ-u}, P^{(n)}=m∫CCf^{(n)} \mathrm{d}ξ , Q^{(n)}=m∫C \frac{C^2}{2} f^{(n)} \mathrm{d}ξ

只需取精确到O(ε1)O({\varepsilon}^1)的宏观方程组进行分析,即可还原出Naiver-Stokes方程。且具有如下关系:

P=P(0)+εP(1)=pI2εμ(STr(S)3I)P=P^{(0)} + \varepsilon P^{(1)} = p \mathbf{I} - 2 \varepsilon \mu (\mathbf{S} - \frac{\mathrm{Tr}(S)}{3} \mathbf{I})

Q=Q(0)+εQ(1)=εκTQ = Q^{(0)} + \varepsilon Q^{(1)} = - \varepsilon \kappa \nabla{T}

其中:κ\kappa为热传导系数, μ\mu 为粘性系数。

离散的LBGK方程也可采用类似的方法展开,还原出宏观流体运动方程(见附录A)。展开方式如下:

fi=fi(0)+εfi(1)+ε2fi(2)+...f_i = f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} + ...

x=εx1,x1=εx\frac{\partial}{\partial x} = \varepsilon \frac{\partial}{\partial x_1} , x_1 = \varepsilon x

略去O(ε3)O({\varepsilon}^3)项,并对O(ε0)O({\varepsilon}^0)项、O(ε1)O({\varepsilon}^1)项和O(ε2)O({\varepsilon}^2)项求0阶和1阶速度矩,即可得到不可压缩流体的Navier-Stokes方程。由于在分析过程中略去了O(ε3)O({\varepsilon}^3)项和速度的3阶项,导致结果缺失了部分物理信息。

三、 Grad-13矩方法及其发展

3.1 Grad的矩分析方法

Grad -13矩是一种由数学家Harold Grad提出的分析方法,其基于Hermite多项式进行分析。对于一个长度为 NN 的向量 x\boldsymbol{x} ,若定义权函数

ω(x)=1(2π)N/2exp(xx2)(12)\omega( \boldsymbol{x}) = \frac{1}{(2 \pi)^{N/2}} \mathrm{exp} \left(- \frac{ \boldsymbol{x} \cdot \boldsymbol{x}}{2} \right) \tag{12}

则其对应的nn阶Hermite多项式写作

H(n)(x)=(1)nω(x)nω(x)(13)\mathcal{H} ^{(n)} ( \boldsymbol{x}) = \frac{(-1)^n}{\omega ( \boldsymbol{x})} \nabla^{n} \omega ( \boldsymbol{x}) \tag{13}

由Hermite多项式的正交性,可证明得到:

+ω(x)Hi(m)(x)Hj(n)(x)dx=δmnδij(14)∫_{-∞}^{+∞} \omega ( \boldsymbol{x}) H_i^{(m)}( \boldsymbol{x}) H_j^{(n)}( \boldsymbol{x}) \mathrm{d} \boldsymbol{x} = \delta_{mn} \delta_{ij} \tag{14}

据此,可将任意一个函数 f(x)f(x) 使用Hermite多项式进行展开[1]。即:

f(x)=ω12n=0i=1Nai(n)Hi(n)(x)(15)f( \boldsymbol{x})=ω^{\frac{1}{2}} \sum_{n=0}^∞ \sum_{i=1}^N a_i^{(n)} H_i^{(n)}( \boldsymbol{x}) \tag{15}

所以

ω1/2f(x)Hj(m)(x)dx=i=1Nai(m)δijm=m!aim(16)\int_{-\infty}^{-\infty} \omega^{1/2} f(x) \mathcal{H}_j^{(m)} (x) \mathrm{d} \it{x} = \sum_{i=\mathrm{1}}^{N} a_i^{\mathrm{(}m\mathrm{)}} \delta_{ij}^m = m\mathrm{!} a_i^{m} \mathrm{\tag{16}}

其中 ai(m)a_i^{(m)} 可借由Hermite多项式的正交性进行求解。 δijm\delta_{ij}^{m} 是一个记号,表示 mmδij\delta_{ij}的乘积之和, iijj 分别来自下标集 (i1,i2,...,im)(i_1 , i_2 , ... , i_m)(j1,j2,...,jm)(j_1 , j_2 , ... , j_m)
在此数学基础之上,Harold Grad将分布函数 ff 展开为[2]

f(x,ξ,t)=ωn=01n!a(n)H(n)(ξ)(17)f(x, \xi, t) = \omega \sum_{n=0}^{\infty} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{17}

根据式(16), a(n)a^{(n)} 的表达式为:

a(n)=+f(x,ξ,t)H(n)(ξ)dξ(18)a^{(n)} = \int_{-\infty}^{+\infty} f(x, \xi, t) H^{(n)}(\xi) d\xi \tag{18}

可得 a(n)a^{(n)} 的前4项为:

a(0)=+f(x,ξ,t)dξ=ρ(19-1)a^{(0)} = \int_{-\infty}^{+\infty} f(x, \xi, t) d\xi= \rho \tag{19-1}

a(1)=+f(x,ξ,t)ξdξ=ρu(19-2)a^{(1)} = \int_{-\infty}^{+\infty} f(x, \xi, t) \xi d\xi = \rho u \tag{19-2}

a(2)=+f(x,ξ,t)(ξ2δ)dξ=ρ(u2δ)+P(19-3)a^{(2)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^2 - \delta) d\xi = \rho (\mathbf{u}^2 - \mathbf{\delta}) + \mathbf{P} \tag{19-3}

a(3)=+f(x,ξ,t)(ξ3ξδ)dξ=(D1)ρu3+ua(2)+Q(19-4)a^{(3)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^3 - \xi \delta) d\xi = (D-1) \rho \bf{u}^3 + \bf{u} \it{a}^{\mathrm{(2)}} \mathrm{+} \mathbf{Q} \tag{19-4}

注意到从 a(0)a^{(0)}a(3)a^{(3)} 都描述了流场的宏观量,所以通过上述表达式的值可以解出流场宏观量。与C-E分析方法不同的是分析过程中没有舍去高阶量。因此这种展开方法得到的式子合理地引入了更高阶的矩,物理意义更加明确。

3.2 Gauss-Hermite积分的引入和离散化BGK方程

Grad的思路开创了描述的新方式,而单肖文、袁学锋、陈沪东三位学者在此基础上进一步发展,于2006年在 Journal of Fluid Mechanics 上提出了将原思路拓展到离散的Boltzmann-BGK方程中的方法[3],简化了求解过程。
首先,基于式(16)将 ff 截断至前 NN 阶,得:

ffN=ωn=0N1n!a(n)H(n)(ξ)(20)f \approx f^N = \omega \sum_{n=0}^{N} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{20}

fNf^Nff 有着完全相同的前 NN 阶矩。通过截断操作将BGK方程对宏观流动方程的近似保持在动力学层面而不是热力学层面。此时fNf^N可表示为:

fN(x,ξ,t)H(n)(ξ)=ω(ξ)p(x,ξ,t)(21)f^{N}(x, \xi , t) H^{(n)}(\xi) = \omega(\xi) p(x, \xi, t) \tag{21}

其中 p(x,ξ,t)p(x, \xi, t) 为阶数不超过 2N2N 的多项式。使用Gauss-Hermite积分可将 a(n)a^{(n)} 精确地展开为 p(x,ξ,t)p(x, \xi, t) 的加权和。

a(n)=ω(ξ)p(x,ξ,t)dξ=a=1dwap(x,ξa,t)=a=1dwaω(ξa)fN(x,ξa,t)H(n)(ξa)(22)a^{(n)} =\int \omega(\xi) p(x, \xi, t) d \xi = \sum_{a=1}^{d} w_a p(x, \xi_a, t) = \sum_{a=1}^{d} \frac{w_a}{\omega(\xi_a)} f^{N}(x, \xi_a, t) H^{(n)}(\xi_a) \tag{22}

式(22)中 waw_a 和 $ \boldsymbol{\xi}_a$ 是Gauss-Hermite积分的权重和特征向量( a=1,2,...,da=1,2,...,d )。所以使用 fN(x,ξa,t)f^N (x, \boldsymbol{\xi}_a, t) 表示 fNf^N 的前 NN 阶矩在数学上可行。
据此可定义离散化的分布函数 faf_aa=1,2,...,da=1,2,...,d ),其对应的权重和特征方向为 waw_aξa\xi_a

fa(x,t)=waω(ξa)f(x,ξa,t)(23)f_a (x,t) = \frac{w_a}{\omega( \boldsymbol{\xi}_a)} f(x, \boldsymbol{\xi}_a, t) \tag{23}

则宏观量可表达为:

ρ=a=1dfa,ρu=a=1dfaξa,ρuu+P=a=1dfaξaξa(24)\rho = \sum_{a=1}^{d} f_a , \rho \mathbf{u} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a , \rho \mathbf{uu} + \mathbf{P} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a \mathbf{\xi}_a \tag{24}

下面将(1)式的碰撞项换为(2)式,并把 Fmfξ\frac{\mathbf{F}}{m} \frac{\partial f}{\partial \xi} 直接记作外力项 F(ξ)-\mathbf{F} (\xi) ,得

ft+ξfx=1τ(ff(eq))+F(ξ)(25)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = \frac{-1}{\tau} ( f - f^{(eq)} ) + \mathbf{F} (\xi) \tag{25}

对式(25),令 ξ=ξa\boldsymbol{\xi} = \boldsymbol{\xi}_a ,并在两端乘上 waω(ξa)\frac{w_a}{\omega( \boldsymbol{\xi}_a)} ,即可得到使用 faf_a 离散的方程( a=1,2,...,da=1,2,...,d ):

fat+ξafa=1τ(fafa(eq))+Fa(26-1)\frac{\partial f_a}{\partial t} + \xi_a \cdot \nabla{f_a} = -\frac{1}{\tau} ( f_a - f_a^{(eq)} ) + F_a \tag{26-1}

fa(eq)=waω(ξa)f(eq)(ξa)(26-2)f_a^{(eq)} = \frac{w_a}{\omega (\xi_a)} f^{(eq)} (\xi_a) \tag{26-2}

Fa=waω(ξa)F(ξa)(26-3)F_a = \frac{w_a}{\omega (\xi_a)} \mathbf{F} (\xi_a) \tag{26-3}

此时只需将 f(eq)f^{(eq)}FF 进行类似的展开,即可完成对整个系统的离散。

附录A. 使用C-E展开方法将离散的LBGK方程还原为Navier-Stokes方程

LBE方程为(A-1.1)式。源项 F\boldsymbol{F}f(eq)f^{(\mathrm{eq})} 为由郭照立、郑楚光和施保昌提出的格式,即(A-1.2)式和(A-1.3)式。[注意,这里的 ff 是密度分布函数]

fi(x+ξiΔt,t+Δt)fi(x,t)=1τ[fi(x,t)fi(eq)(x,t)]+ΔtFi(x,t)(A-1.1)f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right]+Δt⋅F_i (x,t) \tag{A-1.1}

Fi=(1Δt2τ)wi[ξiucs2+(ξiu)ξics4]F(A-1.2)F_i=(1 - \frac{Δt}{2τ}) w_i \left[ \frac{\mathbf{\xi_i-u} }{c_s^2 } + \frac{\mathbf{(\xi_i \cdot u) \xi_i} }{c_s^4} \right] ⋅ F \tag{A-1.2}

fi(eq)(x,t)=ρwi[1+ξiucs2+uu:(ξiξics2I)2cs4](A-1.3)f_i^{(eq)} (x,t) = \rho w_i \left[ 1 + \frac{\mathbf{ξ_i⋅u}}{c_s^2} +\frac{ \mathbf{uu} : ( \mathbf{ξ_i ξ_i} - c_s^2 \mathbf{I}) }{2c_s^4} \right] \tag{A-1.3}

并且对于 fif_ifi(eq)f_i^{(eq)} 有:

{ρ=ifiρu=iξifi+Δt2F\begin{cases} \rho = \sum_i {f_i} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i} + \frac{\Delta t}{2} F \end{cases}

{ρ=ifi(eq)ρu=iξifi(eq)ρ(uu+cs2I)=iξiξifi(eq)\begin{cases} \rho = \sum_i {f_i^{(eq)}} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i^{(eq)}} \\ \rho (\mathbf{uu} + c_s^2 \mathbf{I}) = \sum_i {\mathbf{\xi_i \xi_i} f_i^{(eq)}} \end{cases}

将(A-1.1)式在 (x,t)(\mathbf{x} , t)处展开,取至 2 阶项得:

Δtfit+ξiΔtfix+12[Δt22fit2+2Δt(ξiΔt)2fitx+Δt2(ξiξi):2fix2]+1τ[fifi(eq)]ΔtFi=0(A-2)\begin{aligned} \Delta t \frac{\partial f_i}{\partial t} + ξ_i \Delta t ⋅ \frac{\partial f_i}{∂x} + &\\ \frac{1}{2} \left[\Delta t^2 \frac{\partial^2 f_i}{\partial t^2} + 2\Delta t(\xi_i \Delta t) ⋅ \frac{\partial^2 f_i}{\partial t∂x} + \Delta t^2 (\xi_i \xi_i): \frac{\partial^2 f_i}{∂x^2} \right] + &\\ \frac{1}{\tau } \left[f_i - f_i^{(eq)} \right] - \Delta t F_i &= 0 \tag{A-2} \end{aligned}

代入多尺度展开等式,并舍去 ε3\varepsilon^3 项和更高阶的项,可得:

(εfi(0)t1+ε2fi(1)t1+ε2fi(0)t2)+ξi(εfi(0)x1+ε2fi(0)x1)+Δt2[ε22fi(0)t12+2ξiε22fi(0)t1x1+(ξiξi):(ε22fi(0)x2)]+1τΔt[fi(0)+εfi(1)+ε2fi(2)fi(eq)]εFi(1)+O(ε3)=0(A-3)\begin{aligned} (\varepsilon \frac{\partial f_i^{(0)}}{\partial t_1} + \varepsilon^2 \frac{\partial f_i^{(1)}}{\partial t_1} + \varepsilon^2 \frac{\partial f_i^{(0)}}{\partial t_2} ) + \xi_i ⋅ (\varepsilon \frac{\partial f_i^{(0)}}{\partial x_1} + \varepsilon^2 \frac{\partial f_i^{(0)}}{\partial x_1}) + &\\ \frac{Δt}{2} \left[ \varepsilon^2 \frac{\partial^2 f_i^{(0)}}{\partial t_1^2} + 2 \xi_i \varepsilon^2 ⋅ \frac{\partial^2 f_i^{(0)}}{\partial t_1 \partial x_1} + (\xi_i \xi_i) : (\varepsilon^2 \frac{\partial^2 f_i^{(0)}}{\partial x^2} ) \right] &\\ + \frac{1}{τΔt} \left[ f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} -f_i^{(eq)} \right] - \varepsilon F_i^{(1)} + O(\varepsilon^3 ) &=0 \tag{A-3} \end{aligned}

从(A-3)式中提取O(ε0)O({\varepsilon}^0)项、O(ε1)O({\varepsilon}^1)项和O(ε2)O({\varepsilon}^2)项,并令 Dk=tk+ξkxkD_k = \frac{\partial}{\partial t_k} + \xi_k \cdot \frac{\partial}{\partial \mathbf{x}_k} 。(A-3)式对任意 ε\varepsilon 都成立,则关于各阶的系数均为0,即:

O(ε0)=1τΔt(fi(0)fi(eq))=0(A-4.1)O({\varepsilon}^0) = \frac{1}{\tau \Delta t} (f_i^{(0)} - f_i^{(eq)}) = 0 \tag{A-4.1}

O(ε1)=D1fi(0)+fi(1)τΔtFi(1)=0(A-4.2)O(\varepsilon^1) = D_1 f_i^{(0)} + \frac{ f_i^{(1)} }{\tau \Delta t} - F_i^{(1)} = 0 \tag{A-4.2}

O(ε2)=fi(0)t2(112τ)D1fi(1)+fi(2)τΔt+Δt2D1Fi(1)=0(A-4.3)O(\varepsilon^2) = \frac{\partial f_i^{(0)}}{\partial t_2} - (1 - \frac{1}{2\tau}) D_1 f_i^{(1)} + \frac{ f_i^{(2)} }{\tau \Delta t} + \frac{\Delta t}{2} D_1 F_i^{(1)} = 0 \tag{A-4.3}

根据多尺度展开的变量关系,可得:
ifi(1)=ifi(2)=0\sum_i {f_i^{(1)}} = \sum_i {f_i^{(2)}} = 0iξifi(2)=0\sum_i { \xi_i f_i^{(2)}} = 0iξifi(1)=Δt2Fi(1)\sum_i { \xi_i f_i^{(1)}} = - \frac{\Delta t}{2} F_i^{(1)}

{iFi=0iξiFi=(112τ)FiξiξiFi=(112τ)2uF\left\{\begin{matrix} \sum_{i} {F_i} = 0 \\ \sum_{i} {\xi_i F_i} = (1 - \frac{1}{2 \tau}) F \\ \sum_{i} {\xi_i \xi_i F_i} = (1 - \frac{1}{2 \tau}) 2 u F \end{matrix}\right.

{iFi(1)=0iξiFi(1)=(112τ)F(1)iξiξiFi(1)=(112τ)2uF(1)\left\{\begin{matrix} \sum_{i} {F_i^{(1)}} = 0 \\ \sum_{i} {\xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) F^{(1)} \\ \sum_{i} {\xi_i \xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) 2 u F^{(1)} \end{matrix}\right.

为方便下文分析,记: Π(k)=iξiξifi(k)\Pi^{(k)} = \sum_i { \xi_i \xi_i f_i^{(k)} }Γ(k)=iξiξiξifi(k)\Gamma^{(k)} = \sum_i { \xi_i \xi_i \xi_i f_i^{(k)} }
O(ε1)O({\varepsilon}^1) 项求1阶和2阶速度矩,得:

ρt1+(ρu)x1=0(A-5.1)\frac{\partial \rho}{\partial t_1} + \frac{\partial (\rho u)}{\partial x_1} = 0 \tag{A-5.1}

(ρu)t1+Π(0)x1=0(A-5.2)\frac{\partial (\rho u)}{\partial t_1} + \frac{\partial \Pi^{(0)}}{\partial x_1} = 0 \tag{A-5.2}

Π(0)=ρ(uu+cs2I)(A-5.3)\Pi^{(0)} = \rho (\it{\bf{uu}} \mathrm{+} c_s^2 \bf{I}) \tag{A-5.3}

O(ε2)O({\varepsilon}^2) 项求1阶和2阶速度矩,得:

ρt2=0(A-6.1)\frac{\partial {\rho}}{\partial t_{2}} = 0 \tag{A-6.1}

(ρu)t2+(112τ)Π(1)x1+Δt(112τ)F(1)x1=0(A-6.2)\frac{\partial (\rho \boldsymbol{u})}{\partial t_{2}} + (1 - \frac{1}{2 \tau}) \frac{\partial \Pi^{(1)}}{\partial \boldsymbol{x}_{1}} + \Delta t (1 - \frac{1}{2 \tau}) \frac{\partial \boldsymbol{F}^{(1)}}{\partial \boldsymbol{x}_{1}} = 0 \tag{A-6.2}

由(A-4.2)式,得: fi(1)=τΔt{D1fi(0)Fi(1)}f_i^{(1)} = \tau \Delta t \{ D_1 f_i^{(0)} - F_i^{(1)}\} ,所以

Π(1)=iξiξifi(1)=τΔt[(ρuu)t1+cs2(ρI)t1+Γ(0)x1(112τ)2uF(1)](A-7)\Pi^{(1)} = \sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}^{(1)} = -\tau \Delta t [\frac{\partial (\rho \boldsymbol{u} \boldsymbol{u})}{\partial t_{1}} + c_s^2 \frac{\partial (\rho \boldsymbol{I})}{\partial t_{1}} + \frac{\partial \Gamma^{(0)}}{\partial \boldsymbol{x}_{1}} - (1 - \frac{1}{2 \tau}) 2\boldsymbol{uF^{(1)}} ] \tag{A-7}

uF(1)\boldsymbol{uF^{(1)}}是Grad的论文中的记号, (uF(1))lm=12(ulFm(1)+umFl(1))(\bf{\it{uF}}^{(1)} )_{\it{lm}} = \mathrm{\frac{1}{2}} (\it{ u_l F_m^{(1)} + u_m F_l^{(1)} } \mathrm{)} 。下文为方便分析,取 Πlm(1)\Pi_{lm}^{(1)} 分析。

对第1项,有: (ρulum)t1=ρulumt1+um(ρul)t1\frac{\partial (\rho u_l u_m)}{\partial t_1} = \rho u_l \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial (\rho u_l)}{\partial t_1} 。由(A-5.2)式,可得[4]

ρumt1+umρt1+x1n(ρumun+ρcs2δmn)=Fm(1)(A-8.1)\rho \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial \rho}{\partial t_1} + \frac{\partial}{\partial x_{1n}} \left( \rho u_m u_n + \rho c_s^2 \delta_{mn} \right) = F_m^{(1)} \tag{A-8.1}

(ρul)t1+x1n(ρulun+ρcs2δln)=Fl(1)(A-8.2)\frac{\partial (\rho u_l)}{\partial t_1}+ \frac{\partial}{\partial x_{1n}} \left( \rho u_l u_n + \rho c_s^2 \delta_{ln} \right) = F_l^{(1)} \tag{A-8.2}

并且

(ρulumun)x1n=ulum(ρun)x1n+ul(ρumun)x1n+um(ρulun)x1n(A-8.3)\frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} = - u_l u_m \frac{\partial (\rho u_n)}{\partial x_{1n}} + u_l \frac{\partial (\rho u_m u_n)}{\partial x_{1n}} + u_m \frac{\partial (\rho u_l u_n)}{\partial x_{1n}} \tag{A-8.3}

所以

(ρulum)x1n=(ulFm(1)+umFl(1))(ρulumun)x1ncs2(ulρx1m+umρx1l)(A-8.4)\frac{\partial (\rho u_l u_m)}{\partial x_{1n}} = (u_l F_m^{(1)} + u_m F_l^{(1)}) - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} - c_s^2 \left( u_l \frac{\partial \rho}{\partial x_{1m}} + u_m \frac{\partial \rho}{\partial x_{1l}} \right) \tag{A-8.4}

所以第2项的分量为: cs2δlmρt1c_s^2 \delta_{lm} \frac{\partial \rho}{\partial t_1}

对第3项的分量,由于

Γlmn(0)=ρcs2(ulδmn+unδlm+umδln)\Gamma_{lmn}^{(0)} = \rho c_s^2 ( u_l \delta_{mn} + u_n \delta_{lm} + u_m \delta_{ln} )

,所以:

Γlmn(0)x1n=cs2(δmnρulx1n+δlmρunx1n+δlnρumx1n)(A-8.5)\frac{\partial \Gamma_{lmn}^{(0)}}{\partial x_{1n}} = c_s^2 ( \delta_{mn} \frac{\partial \rho u_l}{\partial x_{1n}} + \delta_{lm} \frac{\partial \rho u_n}{\partial x_{1n}} + \delta_{ln} \frac{\partial \rho u_m}{\partial x_{1n}} ) \tag{A-8.5}

所以

Πlm(1)=τΔt[(ρulumun)x1n+12τ(ulFm(1)+umFl(1))+ρcs2(ulx1m+umx1l)](A-8.6)\Pi_{lm}^{(1)} = - \tau \Delta t \left[ - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} + \frac{1}{2 \tau} (u_l F_m^{(1)} + u_m F_l^{(1)}) + \rho c_s^2 ( \frac{\partial u_l}{\partial x_{1m}} + \frac{\partial u_m}{\partial x_{1l}} ) \right] \tag{A-8.6}

略去Πlm(1)\Pi_{lm}^{(1)} 中的速度的3阶项(即 x1n{ρulumun}\frac{\partial}{\partial x_{1n}} \{ \rho u_l u_m u_n \} ),有

Π(1)=ΔtuF(1)τρcs2Δt[ux1+(ux1)T](A-9)\Pi^{(1)} = - \Delta t \cdot \boldsymbol{u F}^{(1)} - \tau \rho c_s^2 \Delta t \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\mathrm{T}} \right] \tag{A-9}

回代(A-6.2)式,得等价形式为

(ρu)t2+cs2Δt(τ12)x1{ρ[ux1+(ux1)T]}=0(A-10)\frac{\partial (\rho \boldsymbol{u})}{\partial t_2} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial \boldsymbol{x_1}} \left\{ \rho \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\mathrm{T}} \right] \right\} = \boldsymbol{0} \tag{A-10}

将(A-10)式和(A-5.2)式联立,得

(ρu)t+(ρuu)x=(ρcs2)x+cs2Δt(τ12)x{ρ[ux+(ux)T]}+F(A-11)\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u)}{\partial x} = - \frac{\partial (\rho c_s^2)}{\partial x} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial x}\{\rho [\frac{\partial u}{\partial x} + (\frac{\partial u}{\partial x})^T ]\} + F \tag{A-11}

此时令 p=cs2ρp = c_s^2 \rhoν=cs2Δt(τ12)\nu = c_s^2 \Delta t (\tau - \frac{1}{2}) ,即可还原回Navier-Stokes方程

附录B.Gauss-Hermite积分

对于任意一维函数 f(ξ)f(\xi) ,高斯积分通过寻找积分点 ξk\xi_k 和其对应权重 wkw_k 实现对 abω(ξ)f(ξ)dξ\int_{a}^{b} \omega(\xi) f(\xi) d \xi 的近似,即

abω(ξ)f(ξ)dξk=1nwkξk(B-1)\int_{a}^{b} \omega(\xi) f(\xi) d \xi \approx \sum_{k=1}^{n} w_k \xi_k \tag{B-1}

其中 ω(ξ)\omega (\xi) 是任意的权重函数。n 点高斯求积的积分点正是对应的第n个正交多项式的根,此时 ξk\xi_k 对应的权重 wkw_k

wk=<Pn1,Pn1>Pn1(ξk)Pn(ξk)(B-2)w_k = \frac{ <P_{n-1}, P_{n-1}> }{ P_{n-1}(\xi_k) P_{n}^{'}(\xi_k) } \tag{B-2}

其中 Pn=dPndxP_{n}^{'} = \frac{d P_n}{d x} 。(B-2)式的精度为 2n12n-1
所以在一维Gauss-Hermite积分中,取 Pn=H(n)P_n = \mathcal{H}^{(n)}H(n)\mathcal{H}^{(n)} 的权函数和表达式见(12)式和(13)式(下文同理)。 n点高斯求积的积分点即为 H(n)\mathcal{H}^{(n)} 的根。因为 dH(n)dξ=ξH(n)H(n+1)=nH(n1)\frac{d \mathcal{H}^{(n)}}{d \xi} = \xi \mathcal{H}^{(n)} - \mathcal{H}^{(n+1)} = n \mathcal{H}^{(n-1)} ,所以有

wk=n!/[nH(n1)(ξk)]2(B-3)w_k = n! / [n \mathcal{H}^{(n-1)} (\xi_k)]^2 \tag{B-3}

对于更高维的情况,可做类似构造[3:1]。分析如下积分

1(2π)D/2exp(ξξ2)p(ξ)dξ(B-4)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi \tag{B-4}

其中 ξ\xi 是长度为D的向量。 p(ξ)p(\xi) 是D维n次多项式,可写为(B-5)式

p(ξ)=n1+n2+...+nDnan1n2...nDj=1Dξjnj(B-5)p(\xi) = \sum\limits_{n_1 + n_2 + ... +n_D \le n} {a_{n_1 n_2 ... n_D}} \prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} \tag{B-5}

其中 an1n2...nDa_{n_1 n_2 ... n_D}为常数。

考虑(B-5)式中的任意一项 j=1Dξjnj\prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} (由于an1n2...nDa_{n_1 n_2 ... n_D} 为常数所以可暂不处理,在最后一步被归并到常数项中),回代到式(B-4)中,得

1(2π)D/2exp(ξξ2)p(ξ)dξ=j=1D(12πexp(ξj22)ξjnjdξj)=j=1D(k=1nwkξk)(B-6.1)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \prod\limits_{j=1}\limits^{D} \left( \frac{1}{\sqrt{2 \pi}} \int \mathrm{exp}(- \frac{\xi_{j}^2}{2}) \xi_j^{n_j} \mathrm{d}\xi_j \right) = \prod\limits_{j=1}\limits^{D} ( \sum\limits_{k=1}\limits^{n} w_k \xi_k ) \tag{B-6.1}

其中 wkw_kξk\xi_k是一维n次多项式高斯积分的权重和积分点。积分结果被转化为多个一维Gauss-Hermite积分的连乘。注意到(B-6.1)式等价于

1(2π)D/2exp(ξξ2)p(ξ)dξ=k1=1n...kD=1n[(wk1wk2...wkD)(ξk1n1ξk2n2...ξkDnD)](B-6.2)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum\limits_{k_1=1}\limits^{n} ... \sum\limits_{k_D=1}\limits^{n} [(w_{k_1} w_{k_2} ... w_{k_D}) (\xi_{k_1}^{n_1} \xi_{k_2}^{n_2} ... \xi_{k_D}^{n_D})] \tag{B-6.2}

如果定义 ξk1...kD=(ξk1,ξk2,...,ξkD)\xi_{k_1 ... k_D} = (\xi_{k_1}, \xi_{k_2}, ... , \xi_{k_D})wk1...kD=wk1wk2...wkDw_{k_1 ... k_D} = w_{k_1} w_{k_2} ... w_{k_D} ,那么(B-4)式等价为

1(2π)D/2exp(ξξ2)p(ξ)dξ=wk1...kDp(ξk1...kD)(B-7)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum w_{k_1 ... k_D} p(\xi_{k_1 ... k_D}) \tag{B-7}

此时则将(B-4)式转换为与一维Gauss-Hermite积分类似的形式,即(B-7)式。

参考


  1. GRAD H. Note on N-Dimensional Hermite Polynomials[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 325–330. http://doi.org/10.1002/cpa.3160020402 ↩︎

  2. GRAD H. On the Kinetic Theory of Rarefied Gases[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 331–407. http://doi.org/10.1002/cpa.3160020403 ↩︎

  3. SHAN X, YUAN X-F, CHEN H. Kinetic Theory Representation of Hydrodynamics: A Way beyond the Navier–Stokes Equation[J]. Journal of Fluid Mechanics, 2006, 550(1): 413. http://doi.org/10.1017/S0022112005008153 ↩︎ ↩︎

  4. CAO W. Investigation of the Applicability of the Lattice Boltzmann Method to Free-Surface Hydrodynamic Problems in Marine Engineering[D/OL]. Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA): École centrale de Nantes, 2019. https://tel.archives-ouvertes.fr/tel-02383174 ↩︎

0%