从格子Boltzmann方程到宏观流体问题的常用还原方法

这是我之前的一次期末大报告作业,里面的内容也算是从其他文章里搬运的,在此重新誊抄出来。内容如有错误,欢迎各位指正。

[注] 1. 下文提到的 xxuuξ\xi 无论有没有加粗均为向量。
2. 本文已经同步发表在本人的知乎CSDN上,可在其他网站获得同样的阅读效果。

一、 单松弛格子Boltzmann方程

1.1 Boltzmann方程

格子Boltzmann方法基于Boltzmann方程(即(1)式),该方程引入速度分布函数,描述了非热力学平衡状态的热力学系统统计行为:

ft+ξfx+Fmfξ=Ω(f)(1)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \boldsymbol{x}} + \frac{F}{m} \cdot \frac{\partial f}{\partial \mathbf{\xi}}=\Omega(f) \tag{1}

(1)式中 Ω(f)\Omega(f) 为碰撞项, ξ=xt\mathbf{\xi}=\frac{\partial x}{\partial t} 。速度分布函数的定义是:在时刻tt,以xx为中心的空间微元 dx\mathrm{d}\mathit{x} 内,速度在 ξ\xi(ξ+dξ)(\xi+\mathrm{d}\it{\xi}) 之间的分子的数量为 fdxdξf \mathrm{d}\it{x} \mathrm{d}\it{\xi} 。记分子质量为 mm ,流体宏观速度为uu,单位体积内能为ee,分子数密度为nn,则:

ρ=mn=mfdξ\rho = mn = m \int{f} \mathrm{d}\xi

ρu=mξfdξ\rho u = m \int{\xi f} \mathrm{d}\xi

ρE=ρe+12ρu2=mfξ22dξ\rho E = \rho e + \frac{1}{2} \rho u^2 = m \int{ f \frac{\xi^2}{2} } \mathrm{d} \xi

碰撞项 描述了分子碰撞对整个系统运动产生的影响,它具有两个特点:①满足质量、动量和能量守恒;②能够反映系统趋于平衡态的趋势。Bhatnagur、Gross和Krook三人在此基础上提出了最为简单且著名的BGK模型,即(2)式。

Ω(f)=1τc(ff(eq))(2)\Omega(f) = -\frac{1}{\tau_c} \left ( f - f^{(eq)} \right ) \tag{2}

其中τc\tau_c为松弛时间, f(eq)f^{(eq)} 为平衡态分布函数。 可根据Boltzmann H定理计算得:

f(eq)=n(2πRT)3/2exp((ξu)22RT)(3)f^{(eq)} = \frac{n}{(2 \pi RT)^{3/2}} \mathrm{exp}\left( -\frac{(\mathbf{\xi-u})^2}{2RT} \right) \tag{3}

1.2 格子Boltzmann方程

为了将Boltzmann方程应用于实际的数值模拟,需要将流体视为大量的离散粒子。离散粒子于流体分子不同,它们驻留在网格上,并按一定的规则在网格上发生碰撞和迁移。因此,1.2节将 mfmf 记为 ff,此时 ff 为密度分布函数。对密度分布函数 ff ,不考虑 FF 的Boltzmann-BGK方程为式。

ft+ξfx=1τc[ff(eq)](4)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = - \frac{1}{\tau_c} \left[ f - f^{(eq)} \right] \tag{4}

其宏观量按如下方式确定

ρ=fdξρu=ξfdξρE=fξ22dξ\rho = \int { f } \mathrm{d} \xi ,\rho u = \int { \xi f } \mathrm{d} \xi ,\rho E = \int { f \frac{\xi^2}{2} } \mathrm{d} \xi

ff 和其对应的 f(eq)f^{(eq)} 可进行如下离散:fi=wiff_i = w_i ffi(eq)=wif(eq)f_i^{(eq)} = w_i f^{(eq)}。其中下标 ii 表示特征方向 ci\boldsymbol{c}_ifif_ifi(eq)f_i^{(eq)}均沿着ci\boldsymbol{c}_i方向运动。据此,沿着特征方向离散(4)式得到的差分格式为

fi(x+ξiΔt,t+Δt)fi(x,t)=1τ[fi(x,t)fi(eq)(x,t)](5)f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right] \tag{5}

其中 τ=τcΔt\tau = \frac{\tau_c}{\Delta t} 为无量纲松弛时间。由于对应的 f(eq)f^{(eq)} 为:

f(eq)=ρexp((ξu)22RT)(6-1)f^{(eq)} = \rho \cdot \mathrm{exp} ( - \frac{(\xi - \it{u})^2}{2\it{RT}} ) \tag{6-1}

所以将 f(eq)f^{(eq)} 展开至2阶并离散,可得:

fi(eq)=wiρ[1+ξiucs2+(ξiu)22cs4uu2cs2](6-2)f^{(eq)}_i = w_i \rho \left[ 1 + \frac{\xi_i \cdot u}{c_s^2} + \frac{(\xi_i \cdot u)^2}{2 c_s^4} - \frac{u \cdot u}{2 c_s^2} \right] \tag{6-2}

其中 cs=RTc_s = \sqrt{RT} 在LBM模拟中一般被称作格子声速。

二、Chapman-Enskog展开分析

将基本碰撞不变量 φi=1,ξ,ξ22φ_i=1,ξ,\frac{ξ^2}{2} 乘以(1)式两端,并对 ξ\xi 积分有:

ρt+(ρu)=0(7-1)\frac{∂ρ}{\partial t}+∇⋅(ρ \mathbf{u})=0 \tag{7-1}

(ρu)t+(ρuu+P)=ρa(7-2)\frac{∂(ρu)}{\partial t}+∇⋅(ρ \mathbf{uu}+P) = ρ \mathit{\bf{a}} \tag{7-2}

(ρE)t+(ρuE+Pu+Q)=ρau(7-3)\frac{∂(\rho E)}{\partial t} + ∇⋅(\rho \mathbf{u}E + P⋅\mathbf{u} + \mathbf{Q})=\rho \mathbf{a⋅u} \tag{7-3}

Chapman-Enskog展开(下文简称C-E展开)是处理Boltzmann方程的一种分析方法,该方法引入小量ε\varepsilon作为展开因子(一般与Knudsen数同阶),将BGK方程在不同的尺度上展开,即:

f=n=0εnf(n)(8)f = \sum_{n=0}^{\infty} \varepsilon^n f^{(n)} \tag{8}

并将分布函数、导数、物理量等都按照ε\varepsilon的不同阶次展开。该方法对 f(n)f^{(n)} 进行了限制,使其满足:f(n)φidξ=0\int f^{(n)} φ_i \mathrm{d}ξ=0φi(i=1,..,5)φ_i (i=1,..,5) 为基本碰撞不变量。将 ff 视为 ρ\rhou\mathbf{u}TT 及其各阶导数的泛函,而时间偏导项则展开为

t=n=0nt(9)\frac{\partial }{\partial t} = \sum_{n=0}^{\infty } \frac{\partial _n}{\partial t} \tag{9}

将(8)式和(9)式代入到(7)式中。得 O(ε0)O({\varepsilon}^0) 方程组为:

0ρt+(ρu)=0(10-1)\frac{∂_0 ρ}{\partial t}+∇⋅(ρ \mathbf{u})=0 \tag{10-1}

0(ρu)t+(ρuu+P(0))=ρa(10-2)\frac{∂_0 (ρu)}{\partial t}+∇⋅(ρ \mathbf{uu}+P^{(0)}) = ρ \mathbf{a} \tag{10-2}

0(ρE)t+(ρuE+P(0)u+Q(0))=ρau(10-3)\frac{∂_0(\rho E)}{\partial t} + ∇⋅(\rho \mathbf{u}E + P^{(0)} ⋅ \mathbf{u} + \mathbf{Q}^{(0)})=\rho \mathbf{a⋅u} \tag{10-3}

以及 O(εn)O({\varepsilon}^n) 方程组为 (n>0)(n>0)

nρt=0(11-1)\frac{∂_n ρ}{\partial t}=0 \tag{11-1}

n(ρu)t+P(n)=0(11-2)\frac{∂_n (ρu)}{\partial t}+∇ ⋅ P^{(n)} = 0 \tag{11-2}

n(ρE)t+(P(n)u+Q(n))=0(11-3)\frac{∂_n (\rho E)}{\partial t} + ∇⋅( P^{(n)} ⋅ \mathbf{u} + \mathbf{Q}^{(n)} ) = 0 \tag{11-3}

其中

C=ξu,P(n)=mCCf(n)dξ,Q(n)=mCC22f(n)dξC=\boldsymbol{ξ-u}, P^{(n)}=m∫CCf^{(n)} \mathrm{d}ξ , Q^{(n)}=m∫C \frac{C^2}{2} f^{(n)} \mathrm{d}ξ

只需取精确到O(ε1)O({\varepsilon}^1)的宏观方程组进行分析,即可还原出Naiver-Stokes方程。且具有如下关系:

P=P(0)+εP(1)=pI2εμ(STr(S)3I)P=P^{(0)} + \varepsilon P^{(1)} = p \mathbf{I} - 2 \varepsilon \mu (\mathbf{S} - \frac{\mathrm{Tr}(S)}{3} \mathbf{I})

Q=Q(0)+εQ(1)=εκTQ = Q^{(0)} + \varepsilon Q^{(1)} = - \varepsilon \kappa \nabla{T}

其中:κ\kappa为热传导系数, μ\mu 为粘性系数。

离散的LBGK方程也可采用类似的方法展开,还原出宏观流体运动方程(见附录A)。展开方式如下:

fi=fi(0)+εfi(1)+ε2fi(2)+...f_i = f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} + ...

x=εx1,x1=εx\frac{\partial}{\partial x} = \varepsilon \frac{\partial}{\partial x_1} , x_1 = \varepsilon x

略去O(ε3)O({\varepsilon}^3)项,并对O(ε0)O({\varepsilon}^0)项、O(ε1)O({\varepsilon}^1)项和O(ε2)O({\varepsilon}^2)项求0阶和1阶速度矩,即可得到不可压缩流体的Navier-Stokes方程。由于在分析过程中略去了O(ε3)O({\varepsilon}^3)项和速度的3阶项,导致结果缺失了部分物理信息。

三、 Grad-13矩方法及其发展

3.1 Grad的矩分析方法

Grad -13矩是一种由数学家Harold Grad提出的分析方法,其基于Hermite多项式进行分析。对于一个长度为 NN 的向量 x\boldsymbol{x} ,若定义权函数

ω(x)=1(2π)N/2exp(xx2)(12)\omega( \boldsymbol{x}) = \frac{1}{(2 \pi)^{N/2}} \mathrm{exp} \left(- \frac{ \boldsymbol{x} \cdot \boldsymbol{x}}{2} \right) \tag{12}

则其对应的nn阶Hermite多项式写作

H(n)(x)=(1)nω(x)nω(x)(13)\mathcal{H} ^{(n)} ( \boldsymbol{x}) = \frac{(-1)^n}{\omega ( \boldsymbol{x})} \nabla^{n} \omega ( \boldsymbol{x}) \tag{13}

由Hermite多项式的正交性,可证明得到:

+ω(x)Hi(m)(x)Hj(n)(x)dx=δmnδij(14)∫_{-∞}^{+∞} \omega ( \boldsymbol{x}) H_i^{(m)}( \boldsymbol{x}) H_j^{(n)}( \boldsymbol{x}) \mathrm{d} \boldsymbol{x} = \delta_{mn} \delta_{ij} \tag{14}

据此,可将任意一个函数 f(x)f(x) 使用Hermite多项式进行展开[1]。即:

f(x)=ω12n=0i=1Nai(n)Hi(n)(x)(15)f( \boldsymbol{x})=ω^{\frac{1}{2}} \sum_{n=0}^∞ \sum_{i=1}^N a_i^{(n)} H_i^{(n)}( \boldsymbol{x}) \tag{15}

所以

ω1/2f(x)Hj(m)(x)dx=i=1Nai(m)δijm=m!aim(16)\int_{-\infty}^{-\infty} \omega^{1/2} f(x) \mathcal{H}_j^{(m)} (x) \mathrm{d} \it{x} = \sum_{i=\mathrm{1}}^{N} a_i^{\mathrm{(}m\mathrm{)}} \delta_{ij}^m = m\mathrm{!} a_i^{m} \mathrm{\tag{16}}

其中 ai(m)a_i^{(m)} 可借由Hermite多项式的正交性进行求解。 δijm\delta_{ij}^{m} 是一个记号,表示 mmδij\delta_{ij}的乘积之和, iijj 分别来自下标集 (i1,i2,...,im)(i_1 , i_2 , ... , i_m)(j1,j2,...,jm)(j_1 , j_2 , ... , j_m)
在此数学基础之上,Harold Grad将分布函数 ff 展开为[2]

f(x,ξ,t)=ωn=01n!a(n)H(n)(ξ)(17)f(x, \xi, t) = \omega \sum_{n=0}^{\infty} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{17}

根据式(16), a(n)a^{(n)} 的表达式为:

a(n)=+f(x,ξ,t)H(n)(ξ)dξ(18)a^{(n)} = \int_{-\infty}^{+\infty} f(x, \xi, t) H^{(n)}(\xi) d\xi \tag{18}

可得 a(n)a^{(n)} 的前4项为:

a(0)=+f(x,ξ,t)dξ=ρ(19-1)a^{(0)} = \int_{-\infty}^{+\infty} f(x, \xi, t) d\xi= \rho \tag{19-1}

a(1)=+f(x,ξ,t)ξdξ=ρu(19-2)a^{(1)} = \int_{-\infty}^{+\infty} f(x, \xi, t) \xi d\xi = \rho u \tag{19-2}

a(2)=+f(x,ξ,t)(ξ2δ)dξ=ρ(u2δ)+P(19-3)a^{(2)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^2 - \delta) d\xi = \rho (\mathbf{u}^2 - \mathbf{\delta}) + \mathbf{P} \tag{19-3}

a(3)=+f(x,ξ,t)(ξ3ξδ)dξ=(D1)ρu3+ua(2)+Q(19-4)a^{(3)} = \int_{-\infty}^{+\infty} f(x, \xi, t) (\xi^3 - \xi \delta) d\xi = (D-1) \rho \bf{u}^3 + \bf{u} \it{a}^{\mathrm{(2)}} \mathrm{+} \mathbf{Q} \tag{19-4}

注意到从 a(0)a^{(0)}a(3)a^{(3)} 都描述了流场的宏观量,所以通过上述表达式的值可以解出流场宏观量。与C-E分析方法不同的是分析过程中没有舍去高阶量。因此这种展开方法得到的式子合理地引入了更高阶的矩,物理意义更加明确。

3.2 Gauss-Hermite积分的引入和离散化BGK方程

Grad的思路开创了描述的新方式,而单肖文、袁学锋、陈沪东三位学者在此基础上进一步发展,于2006年在 Journal of Fluid Mechanics 上提出了将原思路拓展到离散的Boltzmann-BGK方程中的方法[3],简化了求解过程。
首先,基于式(16)将 ff 截断至前 NN 阶,得:

ffN=ωn=0N1n!a(n)H(n)(ξ)(20)f \approx f^N = \omega \sum_{n=0}^{N} \frac{1}{n!} a^{(n)} H^{(n)}(\xi) \tag{20}

fNf^Nff 有着完全相同的前 NN 阶矩。通过截断操作将BGK方程对宏观流动方程的近似保持在动力学层面而不是热力学层面。此时fNf^N可表示为:

fN(x,ξ,t)H(n)(ξ)=ω(ξ)p(x,ξ,t)(21)f^{N}(x, \xi , t) H^{(n)}(\xi) = \omega(\xi) p(x, \xi, t) \tag{21}

其中 p(x,ξ,t)p(x, \xi, t) 为阶数不超过 2N2N 的多项式。使用Gauss-Hermite积分可将 a(n)a^{(n)} 精确地展开为 p(x,ξ,t)p(x, \xi, t) 的加权和。

a(n)=ω(ξ)p(x,ξ,t)dξ=a=1dwap(x,ξa,t)=a=1dwaω(ξa)fN(x,ξa,t)H(n)(ξa)(22)a^{(n)} =\int \omega(\xi) p(x, \xi, t) d \xi = \sum_{a=1}^{d} w_a p(x, \xi_a, t) = \sum_{a=1}^{d} \frac{w_a}{\omega(\xi_a)} f^{N}(x, \xi_a, t) H^{(n)}(\xi_a) \tag{22}

式(22)中 waw_a 和 $ \boldsymbol{\xi}_a$ 是Gauss-Hermite积分的权重和特征向量( a=1,2,...,da=1,2,...,d )。所以使用 fN(x,ξa,t)f^N (x, \boldsymbol{\xi}_a, t) 表示 fNf^N 的前 NN 阶矩在数学上可行。
据此可定义离散化的分布函数 faf_aa=1,2,...,da=1,2,...,d ),其对应的权重和特征方向为 waw_aξa\xi_a

fa(x,t)=waω(ξa)f(x,ξa,t)(23)f_a (x,t) = \frac{w_a}{\omega( \boldsymbol{\xi}_a)} f(x, \boldsymbol{\xi}_a, t) \tag{23}

则宏观量可表达为:

ρ=a=1dfa,ρu=a=1dfaξa,ρuu+P=a=1dfaξaξa(24)\rho = \sum_{a=1}^{d} f_a , \rho \mathbf{u} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a , \rho \mathbf{uu} + \mathbf{P} = \sum_{a=1}^{d} f_a \mathbf{\xi}_a \mathbf{\xi}_a \tag{24}

下面将(1)式的碰撞项换为(2)式,并把 Fmfξ\frac{\mathbf{F}}{m} \frac{\partial f}{\partial \xi} 直接记作外力项 F(ξ)-\mathbf{F} (\xi) ,得

ft+ξfx=1τ(ff(eq))+F(ξ)(25)\frac{\partial f}{\partial t} + \mathbf{\xi} \cdot \frac{\partial f}{\partial \mathit{x}} = \frac{-1}{\tau} ( f - f^{(eq)} ) + \mathbf{F} (\xi) \tag{25}

对式(25),令 ξ=ξa\boldsymbol{\xi} = \boldsymbol{\xi}_a ,并在两端乘上 waω(ξa)\frac{w_a}{\omega( \boldsymbol{\xi}_a)} ,即可得到使用 faf_a 离散的方程( a=1,2,...,da=1,2,...,d ):

fat+ξafa=1τ(fafa(eq))+Fa(26-1)\frac{\partial f_a}{\partial t} + \xi_a \cdot \nabla{f_a} = -\frac{1}{\tau} ( f_a - f_a^{(eq)} ) + F_a \tag{26-1}

fa(eq)=waω(ξa)f(eq)(ξa)(26-2)f_a^{(eq)} = \frac{w_a}{\omega (\xi_a)} f^{(eq)} (\xi_a) \tag{26-2}

Fa=waω(ξa)F(ξa)(26-3)F_a = \frac{w_a}{\omega (\xi_a)} \mathbf{F} (\xi_a) \tag{26-3}

此时只需将 f(eq)f^{(eq)}FF 进行类似的展开,即可完成对整个系统的离散。

附录A. 使用C-E展开方法将离散的LBGK方程还原为Navier-Stokes方程

LBE方程为(A-1.1)式。源项 F\boldsymbol{F}f(eq)f^{(\mathrm{eq})} 为由郭照立、郑楚光和施保昌提出的格式,即(A-1.2)式和(A-1.3)式。[注意,这里的 ff 是密度分布函数]

fi(x+ξiΔt,t+Δt)fi(x,t)=1τ[fi(x,t)fi(eq)(x,t)]+ΔtFi(x,t)(A-1.1)f_i (x+ξ_i Δt,t+Δt)-f_i (x,t)=-\frac{1}{τ} \left[f_i (x,t)-f_i^{(eq)} (x,t) \right]+Δt⋅F_i (x,t) \tag{A-1.1}

Fi=(1Δt2τ)wi[ξiucs2+(ξiu)ξics4]F(A-1.2)F_i=(1 - \frac{Δt}{2τ}) w_i \left[ \frac{\mathbf{\xi_i-u} }{c_s^2 } + \frac{\mathbf{(\xi_i \cdot u) \xi_i} }{c_s^4} \right] ⋅ F \tag{A-1.2}

fi(eq)(x,t)=ρwi[1+ξiucs2+uu:(ξiξics2I)2cs4](A-1.3)f_i^{(eq)} (x,t) = \rho w_i \left[ 1 + \frac{\mathbf{ξ_i⋅u}}{c_s^2} +\frac{ \mathbf{uu} : ( \mathbf{ξ_i ξ_i} - c_s^2 \mathbf{I}) }{2c_s^4} \right] \tag{A-1.3}

并且对于 fif_ifi(eq)f_i^{(eq)} 有:

{ρ=ifiρu=iξifi+Δt2F\begin{cases} \rho = \sum_i {f_i} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i} + \frac{\Delta t}{2} F \end{cases}

{ρ=ifi(eq)ρu=iξifi(eq)ρ(uu+cs2I)=iξiξifi(eq)\begin{cases} \rho = \sum_i {f_i^{(eq)}} \\ \rho \mathbf{u} = \sum_i {\mathbf{\xi_i} f_i^{(eq)}} \\ \rho (\mathbf{uu} + c_s^2 \mathbf{I}) = \sum_i {\mathbf{\xi_i \xi_i} f_i^{(eq)}} \end{cases}

将(A-1.1)式在 (x,t)(\mathbf{x} , t)处展开,取至 2 阶项得:

Δtfit+ξiΔtfix+12[Δt22fit2+2Δt(ξiΔt)2fitx+Δt2(ξiξi):2fix2]+1τ[fifi(eq)]ΔtFi=0(A-2)\begin{aligned} \Delta t \frac{\partial f_i}{\partial t} + ξ_i \Delta t ⋅ \frac{\partial f_i}{∂x} + &\\ \frac{1}{2} \left[\Delta t^2 \frac{\partial^2 f_i}{\partial t^2} + 2\Delta t(\xi_i \Delta t) ⋅ \frac{\partial^2 f_i}{\partial t∂x} + \Delta t^2 (\xi_i \xi_i): \frac{\partial^2 f_i}{∂x^2} \right] + &\\ \frac{1}{\tau } \left[f_i - f_i^{(eq)} \right] - \Delta t F_i &= 0 \tag{A-2} \end{aligned}

代入多尺度展开等式,并舍去 ε3\varepsilon^3 项和更高阶的项,可得:

(εfi(0)t1+ε2fi(1)t1+ε2fi(0)t2)+ξi(εfi(0)x1+ε2fi(0)x1)+Δt2[ε22fi(0)t12+2ξiε22fi(0)t1x1+(ξiξi):(ε22fi(0)x2)]+1τΔt[fi(0)+εfi(1)+ε2fi(2)fi(eq)]εFi(1)+O(ε3)=0(A-3)\begin{aligned} (\varepsilon \frac{\partial f_i^{(0)}}{\partial t_1} + \varepsilon^2 \frac{\partial f_i^{(1)}}{\partial t_1} + \varepsilon^2 \frac{\partial f_i^{(0)}}{\partial t_2} ) + \xi_i ⋅ (\varepsilon \frac{\partial f_i^{(0)}}{\partial x_1} + \varepsilon^2 \frac{\partial f_i^{(0)}}{\partial x_1}) + &\\ \frac{Δt}{2} \left[ \varepsilon^2 \frac{\partial^2 f_i^{(0)}}{\partial t_1^2} + 2 \xi_i \varepsilon^2 ⋅ \frac{\partial^2 f_i^{(0)}}{\partial t_1 \partial x_1} + (\xi_i \xi_i) : (\varepsilon^2 \frac{\partial^2 f_i^{(0)}}{\partial x^2} ) \right] &\\ + \frac{1}{τΔt} \left[ f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} -f_i^{(eq)} \right] - \varepsilon F_i^{(1)} + O(\varepsilon^3 ) &=0 \tag{A-3} \end{aligned}

从(A-3)式中提取O(ε0)O({\varepsilon}^0)项、O(ε1)O({\varepsilon}^1)项和O(ε2)O({\varepsilon}^2)项,并令 Dk=tk+ξkxkD_k = \frac{\partial}{\partial t_k} + \xi_k \cdot \frac{\partial}{\partial \mathbf{x}_k} 。(A-3)式对任意 ε\varepsilon 都成立,则关于各阶的系数均为0,即:

O(ε0)=1τΔt(fi(0)fi(eq))=0(A-4.1)O({\varepsilon}^0) = \frac{1}{\tau \Delta t} (f_i^{(0)} - f_i^{(eq)}) = 0 \tag{A-4.1}

O(ε1)=D1fi(0)+fi(1)τΔtFi(1)=0(A-4.2)O(\varepsilon^1) = D_1 f_i^{(0)} + \frac{ f_i^{(1)} }{\tau \Delta t} - F_i^{(1)} = 0 \tag{A-4.2}

O(ε2)=fi(0)t2(112τ)D1fi(1)+fi(2)τΔt+Δt2D1Fi(1)=0(A-4.3)O(\varepsilon^2) = \frac{\partial f_i^{(0)}}{\partial t_2} - (1 - \frac{1}{2\tau}) D_1 f_i^{(1)} + \frac{ f_i^{(2)} }{\tau \Delta t} + \frac{\Delta t}{2} D_1 F_i^{(1)} = 0 \tag{A-4.3}

根据多尺度展开的变量关系,可得:
ifi(1)=ifi(2)=0\sum_i {f_i^{(1)}} = \sum_i {f_i^{(2)}} = 0iξifi(2)=0\sum_i { \xi_i f_i^{(2)}} = 0iξifi(1)=Δt2Fi(1)\sum_i { \xi_i f_i^{(1)}} = - \frac{\Delta t}{2} F_i^{(1)}

{iFi=0iξiFi=(112τ)FiξiξiFi=(112τ)2uF\left\{\begin{matrix} \sum_{i} {F_i} = 0 \\ \sum_{i} {\xi_i F_i} = (1 - \frac{1}{2 \tau}) F \\ \sum_{i} {\xi_i \xi_i F_i} = (1 - \frac{1}{2 \tau}) 2 u F \end{matrix}\right.

{iFi(1)=0iξiFi(1)=(112τ)F(1)iξiξiFi(1)=(112τ)2uF(1)\left\{\begin{matrix} \sum_{i} {F_i^{(1)}} = 0 \\ \sum_{i} {\xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) F^{(1)} \\ \sum_{i} {\xi_i \xi_i F_i^{(1)}} = (1 - \frac{1}{2 \tau}) 2 u F^{(1)} \end{matrix}\right.

为方便下文分析,记: Π(k)=iξiξifi(k)\Pi^{(k)} = \sum_i { \xi_i \xi_i f_i^{(k)} }Γ(k)=iξiξiξifi(k)\Gamma^{(k)} = \sum_i { \xi_i \xi_i \xi_i f_i^{(k)} }
O(ε1)O({\varepsilon}^1) 项求1阶和2阶速度矩,得:

ρt1+(ρu)x1=0(A-5.1)\frac{\partial \rho}{\partial t_1} + \frac{\partial (\rho u)}{\partial x_1} = 0 \tag{A-5.1}

(ρu)t1+Π(0)x1=0(A-5.2)\frac{\partial (\rho u)}{\partial t_1} + \frac{\partial \Pi^{(0)}}{\partial x_1} = 0 \tag{A-5.2}

Π(0)=ρ(uu+cs2I)(A-5.3)\Pi^{(0)} = \rho (\it{\bf{uu}} \mathrm{+} c_s^2 \bf{I}) \tag{A-5.3}

O(ε2)O({\varepsilon}^2) 项求1阶和2阶速度矩,得:

ρt2=0(A-6.1)\frac{\partial {\rho}}{\partial t_{2}} = 0 \tag{A-6.1}

(ρu)t2+(112τ)Π(1)x1+Δt(112τ)F(1)x1=0(A-6.2)\frac{\partial (\rho \boldsymbol{u})}{\partial t_{2}} + (1 - \frac{1}{2 \tau}) \frac{\partial \Pi^{(1)}}{\partial \boldsymbol{x}_{1}} + \Delta t (1 - \frac{1}{2 \tau}) \frac{\partial \boldsymbol{F}^{(1)}}{\partial \boldsymbol{x}_{1}} = 0 \tag{A-6.2}

由(A-4.2)式,得: fi(1)=τΔt{D1fi(0)Fi(1)}f_i^{(1)} = \tau \Delta t \{ D_1 f_i^{(0)} - F_i^{(1)}\} ,所以

Π(1)=iξiξifi(1)=τΔt[(ρuu)t1+cs2(ρI)t1+Γ(0)x1(112τ)2uF(1)](A-7)\Pi^{(1)} = \sum_{i} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i} f_{i}^{(1)} = -\tau \Delta t [\frac{\partial (\rho \boldsymbol{u} \boldsymbol{u})}{\partial t_{1}} + c_s^2 \frac{\partial (\rho \boldsymbol{I})}{\partial t_{1}} + \frac{\partial \Gamma^{(0)}}{\partial \boldsymbol{x}_{1}} - (1 - \frac{1}{2 \tau}) 2\boldsymbol{uF^{(1)}} ] \tag{A-7}

uF(1)\boldsymbol{uF^{(1)}}是Grad的论文中的记号, (uF(1))lm=12(ulFm(1)+umFl(1))(\bf{\it{uF}}^{(1)} )_{\it{lm}} = \mathrm{\frac{1}{2}} (\it{ u_l F_m^{(1)} + u_m F_l^{(1)} } \mathrm{)} 。下文为方便分析,取 Πlm(1)\Pi_{lm}^{(1)} 分析。

对第1项,有: (ρulum)t1=ρulumt1+um(ρul)t1\frac{\partial (\rho u_l u_m)}{\partial t_1} = \rho u_l \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial (\rho u_l)}{\partial t_1} 。由(A-5.2)式,可得[4]

ρumt1+umρt1+x1n(ρumun+ρcs2δmn)=Fm(1)(A-8.1)\rho \frac{\partial u_m}{\partial t_1} + u_m \frac{\partial \rho}{\partial t_1} + \frac{\partial}{\partial x_{1n}} \left( \rho u_m u_n + \rho c_s^2 \delta_{mn} \right) = F_m^{(1)} \tag{A-8.1}

(ρul)t1+x1n(ρulun+ρcs2δln)=Fl(1)(A-8.2)\frac{\partial (\rho u_l)}{\partial t_1}+ \frac{\partial}{\partial x_{1n}} \left( \rho u_l u_n + \rho c_s^2 \delta_{ln} \right) = F_l^{(1)} \tag{A-8.2}

并且

(ρulumun)x1n=ulum(ρun)x1n+ul(ρumun)x1n+um(ρulun)x1n(A-8.3)\frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} = - u_l u_m \frac{\partial (\rho u_n)}{\partial x_{1n}} + u_l \frac{\partial (\rho u_m u_n)}{\partial x_{1n}} + u_m \frac{\partial (\rho u_l u_n)}{\partial x_{1n}} \tag{A-8.3}

所以

(ρulum)x1n=(ulFm(1)+umFl(1))(ρulumun)x1ncs2(ulρx1m+umρx1l)(A-8.4)\frac{\partial (\rho u_l u_m)}{\partial x_{1n}} = (u_l F_m^{(1)} + u_m F_l^{(1)}) - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} - c_s^2 \left( u_l \frac{\partial \rho}{\partial x_{1m}} + u_m \frac{\partial \rho}{\partial x_{1l}} \right) \tag{A-8.4}

所以第2项的分量为: cs2δlmρt1c_s^2 \delta_{lm} \frac{\partial \rho}{\partial t_1}

对第3项的分量,由于

Γlmn(0)=ρcs2(ulδmn+unδlm+umδln)\Gamma_{lmn}^{(0)} = \rho c_s^2 ( u_l \delta_{mn} + u_n \delta_{lm} + u_m \delta_{ln} )

,所以:

Γlmn(0)x1n=cs2(δmnρulx1n+δlmρunx1n+δlnρumx1n)(A-8.5)\frac{\partial \Gamma_{lmn}^{(0)}}{\partial x_{1n}} = c_s^2 ( \delta_{mn} \frac{\partial \rho u_l}{\partial x_{1n}} + \delta_{lm} \frac{\partial \rho u_n}{\partial x_{1n}} + \delta_{ln} \frac{\partial \rho u_m}{\partial x_{1n}} ) \tag{A-8.5}

所以

Πlm(1)=τΔt[(ρulumun)x1n+12τ(ulFm(1)+umFl(1))+ρcs2(ulx1m+umx1l)](A-8.6)\Pi_{lm}^{(1)} = - \tau \Delta t \left[ - \frac{\partial (\rho u_l u_m u_n)}{\partial x_{1n}} + \frac{1}{2 \tau} (u_l F_m^{(1)} + u_m F_l^{(1)}) + \rho c_s^2 ( \frac{\partial u_l}{\partial x_{1m}} + \frac{\partial u_m}{\partial x_{1l}} ) \right] \tag{A-8.6}

略去Πlm(1)\Pi_{lm}^{(1)} 中的速度的3阶项(即 x1n{ρulumun}\frac{\partial}{\partial x_{1n}} \{ \rho u_l u_m u_n \} ),有

Π(1)=ΔtuF(1)τρcs2Δt[ux1+(ux1)T](A-9)\Pi^{(1)} = - \Delta t \cdot \boldsymbol{u F}^{(1)} - \tau \rho c_s^2 \Delta t \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\mathrm{T}} \right] \tag{A-9}

回代(A-6.2)式,得等价形式为

(ρu)t2+cs2Δt(τ12)x1{ρ[ux1+(ux1)T]}=0(A-10)\frac{\partial (\rho \boldsymbol{u})}{\partial t_2} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial \boldsymbol{x_1}} \left\{ \rho \left[ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} + \left( \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x_1}} \right)^{\mathrm{T}} \right] \right\} = \boldsymbol{0} \tag{A-10}

将(A-10)式和(A-5.2)式联立,得

(ρu)t+(ρuu)x=(ρcs2)x+cs2Δt(τ12)x{ρ[ux+(ux)T]}+F(A-11)\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u)}{\partial x} = - \frac{\partial (\rho c_s^2)}{\partial x} + c_s^2 \Delta t (\tau - \frac{1}{2}) \frac{\partial}{\partial x}\{\rho [\frac{\partial u}{\partial x} + (\frac{\partial u}{\partial x})^T ]\} + F \tag{A-11}

此时令 p=cs2ρp = c_s^2 \rhoν=cs2Δt(τ12)\nu = c_s^2 \Delta t (\tau - \frac{1}{2}) ,即可还原回Navier-Stokes方程

附录B.Gauss-Hermite积分

对于任意一维函数 f(ξ)f(\xi) ,高斯积分通过寻找积分点 ξk\xi_k 和其对应权重 wkw_k 实现对 abω(ξ)f(ξ)dξ\int_{a}^{b} \omega(\xi) f(\xi) d \xi 的近似,即

abω(ξ)f(ξ)dξk=1nwkξk(B-1)\int_{a}^{b} \omega(\xi) f(\xi) d \xi \approx \sum_{k=1}^{n} w_k \xi_k \tag{B-1}

其中 ω(ξ)\omega (\xi) 是任意的权重函数。n 点高斯求积的积分点正是对应的第n个正交多项式的根,此时 ξk\xi_k 对应的权重 wkw_k

wk=<Pn1,Pn1>Pn1(ξk)Pn(ξk)(B-2)w_k = \frac{ <P_{n-1}, P_{n-1}> }{ P_{n-1}(\xi_k) P_{n}^{'}(\xi_k) } \tag{B-2}

其中 Pn=dPndxP_{n}^{'} = \frac{d P_n}{d x} 。(B-2)式的精度为 2n12n-1
所以在一维Gauss-Hermite积分中,取 Pn=H(n)P_n = \mathcal{H}^{(n)}H(n)\mathcal{H}^{(n)} 的权函数和表达式见(12)式和(13)式(下文同理)。 n点高斯求积的积分点即为 H(n)\mathcal{H}^{(n)} 的根。因为 dH(n)dξ=ξH(n)H(n+1)=nH(n1)\frac{d \mathcal{H}^{(n)}}{d \xi} = \xi \mathcal{H}^{(n)} - \mathcal{H}^{(n+1)} = n \mathcal{H}^{(n-1)} ,所以有

wk=n!/[nH(n1)(ξk)]2(B-3)w_k = n! / [n \mathcal{H}^{(n-1)} (\xi_k)]^2 \tag{B-3}

对于更高维的情况,可做类似构造[3:1]。分析如下积分

1(2π)D/2exp(ξξ2)p(ξ)dξ(B-4)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi \tag{B-4}

其中 ξ\xi 是长度为D的向量。 p(ξ)p(\xi) 是D维n次多项式,可写为(B-5)式

p(ξ)=n1+n2+...+nDnan1n2...nDj=1Dξjnj(B-5)p(\xi) = \sum\limits_{n_1 + n_2 + ... +n_D \le n} {a_{n_1 n_2 ... n_D}} \prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} \tag{B-5}

其中 an1n2...nDa_{n_1 n_2 ... n_D}为常数。

考虑(B-5)式中的任意一项 j=1Dξjnj\prod\limits_{j=1}\limits^{D}{\xi_{j}^{n_j}} (由于an1n2...nDa_{n_1 n_2 ... n_D} 为常数所以可暂不处理,在最后一步被归并到常数项中),回代到式(B-4)中,得

1(2π)D/2exp(ξξ2)p(ξ)dξ=j=1D(12πexp(ξj22)ξjnjdξj)=j=1D(k=1nwkξk)(B-6.1)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \prod\limits_{j=1}\limits^{D} \left( \frac{1}{\sqrt{2 \pi}} \int \mathrm{exp}(- \frac{\xi_{j}^2}{2}) \xi_j^{n_j} \mathrm{d}\xi_j \right) = \prod\limits_{j=1}\limits^{D} ( \sum\limits_{k=1}\limits^{n} w_k \xi_k ) \tag{B-6.1}

其中 wkw_kξk\xi_k是一维n次多项式高斯积分的权重和积分点。积分结果被转化为多个一维Gauss-Hermite积分的连乘。注意到(B-6.1)式等价于

1(2π)D/2exp(ξξ2)p(ξ)dξ=k1=1n...kD=1n[(wk1wk2...wkD)(ξk1n1ξk2n2...ξkDnD)](B-6.2)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum\limits_{k_1=1}\limits^{n} ... \sum\limits_{k_D=1}\limits^{n} [(w_{k_1} w_{k_2} ... w_{k_D}) (\xi_{k_1}^{n_1} \xi_{k_2}^{n_2} ... \xi_{k_D}^{n_D})] \tag{B-6.2}

如果定义 ξk1...kD=(ξk1,ξk2,...,ξkD)\xi_{k_1 ... k_D} = (\xi_{k_1}, \xi_{k_2}, ... , \xi_{k_D})wk1...kD=wk1wk2...wkDw_{k_1 ... k_D} = w_{k_1} w_{k_2} ... w_{k_D} ,那么(B-4)式等价为

1(2π)D/2exp(ξξ2)p(ξ)dξ=wk1...kDp(ξk1...kD)(B-7)\frac{1}{(2 \pi)^{D/2}} \int \mathrm{exp}(- \frac{\xi \cdot \xi}{2}) p(\xi) \mathrm{d} \xi = \sum w_{k_1 ... k_D} p(\xi_{k_1 ... k_D}) \tag{B-7}

此时则将(B-4)式转换为与一维Gauss-Hermite积分类似的形式,即(B-7)式。

参考


  1. GRAD H. Note on N-Dimensional Hermite Polynomials[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 325–330. http://doi.org/10.1002/cpa.3160020402 ↩︎

  2. GRAD H. On the Kinetic Theory of Rarefied Gases[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 331–407. http://doi.org/10.1002/cpa.3160020403 ↩︎

  3. SHAN X, YUAN X-F, CHEN H. Kinetic Theory Representation of Hydrodynamics: A Way beyond the Navier–Stokes Equation[J]. Journal of Fluid Mechanics, 2006, 550(1): 413. http://doi.org/10.1017/S0022112005008153 ↩︎ ↩︎

  4. CAO W. Investigation of the Applicability of the Lattice Boltzmann Method to Free-Surface Hydrodynamic Problems in Marine Engineering[D/OL]. Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA): École centrale de Nantes, 2019. https://tel.archives-ouvertes.fr/tel-02383174 ↩︎