LBM笔记:Exact Difference Method 构建的源项

本文同步发表于知乎CSDN

我在阅读其他文献时,看到有文献提到 Kupershtokh 的一篇关于 LBM 外力项的文章[1],他提出的格式在其他文章中又被称为 Exact difference method(EDM)

本想搜索这篇文章的PDF进行阅读,但最后只找到一个网站介绍了部分信息。这份粗略笔记的内容,都是基于其他文献[2][3][4]中对该方法的介绍而整理的。

介绍

Boltzmann-BGK方程的近似

密度分布函数 ff 的 Boltzmann-BGK方程写作:

ft+ξf+aξf=1τf[ff(eq)](1)\frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f + \bold{a} \cdot \nabla_{\bold{\xi}} f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] \tag{1}

其中:

f(eq)=ρ(2πRgT)D/2exp((ξu)22RgT)(2)f^{(eq)} = \frac{\rho}{(2 \pi R_g T)^{D/2}} \exp{\left(- \frac{(\bold{\xi} - \bold{u})^2}{2 R_g T}\right)} \tag{2}

符号含义分别为

  • ξ\bold{\xi} : 粒子速度;
  • ρ\rho : 流体密度;
  • u\bold{u} : 流场宏观速度;
  • RgR_g : 气体常数;
  • TT : 温度;
  • a=du/dt\bold{a}=\mathrm{d}\bold{u}/\mathrm{d}t : 流场加速度。

Knudsen数较小时,Boltzmann方程的体力项可以基于f(eq)f^{(eq)}进行近似,即

ξfξf(eq)\nabla_{\bold{\xi}} f \approx \nabla_{\bold{\xi}} f^{(eq)}

根据式(2), f(eq)f^{(eq)} 是分子随机速度 C=ξu\bold{C} = \bold{\xi} - \bold{u} 的指数函数,则:

f(eq)u=f(eq)ξ=ξf(eq)\frac{\partial f^{(eq)}}{\partial \bold{u}} = -\frac{\partial f^{(eq)}}{\partial \bold{\xi}} = -\nabla_{\bold{\xi}} f^{(eq)}

假设密度 ρ\rho 为常数,则 dρdt=0\frac{\mathrm{d} \rho}{\mathrm{d} t}=0,那么 f(eq)f^{(eq)} 的全导数为:

df(eq)dt=f(eq)ududt+f(eq)ρdρdtf(eq)ududt=aξf(eq)\begin{aligned} \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} &= \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} + \frac{\partial f^{(eq)}}{\partial \rho} \cdot \frac{\mathrm{d} \rho}{\mathrm{d} t} \\ &\approx \frac{\partial f^{(eq)}}{\partial \bold{u}} \cdot \frac{\mathrm{d} \bold{u}}{\mathrm{d} t} = -\bold{a} \cdot \nabla_{\bold{\xi}} f^{(eq)} \end{aligned}

也就是说,Kupershtokh 等[1:1][2:1]近似的 Boltzmann-BGK方程写作:

ft+ξf=1τf[ff(eq)]+df(eq)dt(3)\frac{\partial f}{\partial t} + \bold{\xi} \cdot \nabla f = -\frac{1}{\tau_f} \left[ f - f^{(eq)}\right] + \frac{\mathrm{d} f^{(eq)}}{\mathrm{d} t} \tag{3}

近似方程的离散化

将式(3)在[t,t+δt][t,t+\delta_t]内沿着eα\bold{e}_\alpha方向积分,可得

fα(x+eαδt,t+δt)fα(x,t)=1τ[fα(x,t)fα(eq)(ρ,u)]+[fα(eq)(u(t+δt))fα(eq)(u(t))](4)\begin{aligned} f_\alpha (\bold{x} + \bold{e}_\alpha \delta_t, t+\delta_t) - f_\alpha (\bold{x}, t) =& -\frac{1}{\tau} \left[ f_\alpha (\bold{x}, t) - f_\alpha^{(eq)} (\rho, \bold{u^*}) \right] \\ & + \left[ f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \right] \end{aligned} \tag{4}

其中:

  • δt\delta_t 为时间步长;
  • τ=τf/δt\tau = \tau_f / \delta_t 为无量纲松弛时间;
  • x\bold{x} 为网格点位置,ρ,u\rho, \bold{u^*} 分别为该点在 tt 时刻的密度和速度(与宏观速度 u\bold{u} 有区别);
  • fα,fα(eq)f_\alpha, f_\alpha^{(eq)} 分别为 eα\bold{e}_\alpha 方向的分布函数平衡态

fα(eq)=wαρ[1+eαucs2+(eαu)22cs4u22cs2]=wαρ[1+eαucs2+12cs4(uu):(eαeαcs2[I])](4-1)\begin{aligned} f_\alpha^{(eq)} &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{(\bold{e}_\alpha \cdot \bold{u})^2}{2 c_s^4} - \frac{|\bold{u}|^2}{2 c_s^2} \right] \\ &= w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \\ \end{aligned} \tag{4-1}

这里 wαw_\alphaeα\bold{e}_\alpha 的权重系数, [I][\bold{I}] 为单位矩阵;
两个同样为m*n大小的矩阵 [A][\bold{A}][B][\bold{B}] ,则 [A]:[B]=i=1mj=1nAijBij\displaystyle [\bold{A}] : [\bold{B}] = \sum^{m}_{i=1}\sum^{n}_{j=1} A_{ij} B_{ij}

  • FαF_\alpha 为外力项,其表达式基于外力 F=ρdudt=ρa\bold{F} = \rho \dfrac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} = \rho \bold{a} 进行构建。

Fα=fα(eq)(u(t+δt))fα(eq)(u(t))F_\alpha = f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t))

并且

u(t)=(αfαeα)/(αfα)u(t+δt)=u(t)+tt+δtdudtdt=u(t)+tt+δtFρdtu(t)+Fρδt(5)\begin{aligned} \bold{u^*}(t) &= \left(\sum_{\alpha} f_\alpha \bold{e}_\alpha \right) / \left(\sum_{\alpha} f_\alpha \right) \\ \bold{u^*}(t+\delta_t) &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\mathrm{d} \bold{u^*}}{\mathrm{d} t} \mathrm{d} t \\ &= \bold{u^*}(t) + \int_{t}^{t+\delta_t} \frac{\bold{F}}{\rho} \mathrm{d} t \approx \bold{u^*}(t) + \frac{\bold{F}}{\rho} \delta_t \end{aligned} \tag{5}

这意味着加速度 a=F/ρ\bold{a}=\bold{F}/\rho[t,t+δt][t,t+\delta_t] 时间段内被视为常数。

Kupershtokh等在这篇文章[2:2]说明,在使用该源项时,流体宏观量的计算应表示为:

ρ=αfα,ρu=ieαfα+δtF2(6)\rho = \sum_{\alpha} f_\alpha ,\quad \rho \bold{u} = \sum_{i} \bold{e}_\alpha f_\alpha + \frac{\delta_t \bold{F}}{2} \tag{6}

Li 等[4:1]通过 Chapman-Enskog 展开证明:该格式向宏观方程引入的误差项为:

ErrorEDM=δt2(FF4ρ)(7)\mathbf{Error}_{\mathrm{EDM}} = -\delta_t^2 \nabla\cdot\left( \frac{\bold{FF}}{4 \rho} \right) \tag{7}

EDM 源项的展开式

为便于分析,这里采用如下书写形式的平衡态:

fα(eq)=wαρ[1+eαucs2+12cs4(uu):(eαeαcs2[I])]f_\alpha^{(eq)} = w_\alpha \rho \cdot \left[ 1 + \frac{\bold{e}_\alpha \cdot \bold{u}}{c_s^2} + \frac{1}{2 c_s^4}(\bold{u}\bold{u}):(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right]

将其带入 EDM 源项,记 Δu=Fρδt\Delta\bold{u} = \frac{\bold{F}}{\rho} \delta_t,整理得:

Fα=fα(eq)(u(t+δt))fα(eq)(u(t))=ρwα{eαΔucs2+12cs4[(u+Δu)(u+Δu)uu]:(eαeαcs2[I])}\begin{aligned} F_{\alpha} &= f_\alpha^{(eq)} (\bold{u^*}(t+\delta_t)) - f_\alpha^{(eq)} (\bold{u^*}(t)) \\&= \rho w_\alpha \left\{ \frac{\bold{e}_\alpha \cdot \Delta\bold{u}}{c_s^2} + \newline \frac{1}{2 c_s^4} \left[ (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) \right.\right. \\ &\quad \left. - \bold{u}^* \bold{u}^* \right] : \left.(\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right\} \end{aligned}

这里涉及矩阵 (u+Δu)(u+Δu)(\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u})uu\bold{u}^* \bold{u}^* 的相减,由于:

(u+Δu)(u+Δu)=(ui+Δui)(uj+Δuj),uu=uiuj(\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) = (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j), \quad \bold{u}^* \bold{u}^* = u^*_{i} u^*_{j}

其中 uiu_i^*Δui=Fiδt/ρ\Delta u_i = F_i \delta_{t} / \rho 分别为 u\bold{u}^*Δu\Delta\bold{u} 在 i 轴上的分量,所以:

(u+Δu)(u+Δu)uu=(ui+Δui)(uj+Δuj)uiuj=δtρ(uiFj+ujFi)+δt2ρ2FiFj=δtρ(ui+Fiδt2ρ)Fj+δtρ(uj+Fjδt2ρ)Fi\begin{aligned} (\bold{u}^* + \Delta\bold{u})(\bold{u}^* + \Delta\bold{u}) - \bold{u}^* \bold{u}^{*} &= (u^*_{i} + \Delta u_i)(u^*_{j} + \Delta u_j) - u^*_{i} u^*_{j} \\ &= \frac{\delta_t}{\rho} (u_i^* F_j + u_j^* F_i) + \frac{\delta_t^2}{\rho^2} F_i F_j \\ &= \frac{\delta_t}{\rho} (u_i^* + \frac{F_i \delta_t}{2 \rho}) F_j + \frac{\delta_t}{\rho} (u_j^* + \frac{F_j \delta_t}{2 \rho}) F_i \end{aligned}

这里令 vEDM=u+F2ρδt\bold{v}_{\rm{EDM}} = \bold{u}^{*} + \frac{\bold{F}}{2 \rho} \delta_{t} ,则 EDM 源项的展开式化简为:

Fα=δtwα[eαFcs2+12cs4(vEDMF+FvEDM):(eαeαcs2[I])](8)F_\alpha = \delta_t w_\alpha \left[ \frac{\bold{e}_\alpha \cdot \bold{F}}{c_s^2} + \frac{1}{2 c_s^4} \left( \bold{v}_{\rm{EDM}} \bold{F} + \bold{F} \bold{v}_{\rm{EDM}} \right) : (\bold{e}_\alpha \bold{e}_\alpha - c_s^2 [\bold{I}]) \right] \tag{8}

上式即为 EDM 源项的展开结果。


  1. Kupershtokh, A. L. New method of incorporating a body force term into the lattice Boltzmann equation. in Proceeding of the 5th international EHD workshop 241–246 (Poitiers, France, 2004). ↩︎ ↩︎

  2. A.L. Kupershtokh, D.A. Medvedev, & D.I. Karpov (2009). On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 58(5), 965-974. DOI:10.1016/j.camwa.2009.02.024. ↩︎ ↩︎ ↩︎

  3. Q. Li, K.H. Luo, Q.J. Kang, Y.L. He, Q. Chen, & Q. Liu (2016). Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105. DOI:10.1016/j.pecs.2015.10.001. ↩︎

  4. Li, Q., Zhou, P., & Yan, H. (2016). Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Physical Review E, 94, 043313. DOI:10.1103/PhysRevE.94.043313. ↩︎ ↩︎